
FFT Compiler: From Math to Efficient Hardware

HLDVT Invited Short Paper

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel

Electrical and Computer Engineering Department

Carnegie Mellon University

Pittsburgh, PA, U.S.A.

{pam, franzf, jhoe, pueschel}@ece.cmu.edu

Abstract— This paper presents a high-level compiler that
generates hardware implementations of the discrete Fourier
transform (DFT) from mathematical specifications. The matrix
formula input language captures not only the DFT calculation
but also the implementation options at the algorithmic and
architectural levels. By selecting the appropriate formula, the
resulting hardware implementations (described in a synthesizable
Verilog description) can achieve a wide range of tradeoffs between
implementation cost and performance. The compiler is also
parameterized for a set of technology-specific optimizations, to
allow it to target specific implementation platforms. This paper
gives a brief overview of the system and presents synthesis results.

I. INTRODUCTION

The discrete Fourier transform (DFT) is a widely used

building block in signal processing applications. The “best” al-

gorithm and architecture to use in a hardware DFT implemen-

tation are highly dependent on the application-specific require-

ments in metrics such as size, throughput, latency, and trade-

offs between them. Although library cores for DFT are widely

available, their fixed nature limits their ability to support

application-specific customizations in the cost/performance

tradeoff space. For example, the Xilinx LogiCore FFT v3.2 [1]

provides just three architectures for choices in balancing cost

and performance.

In this work, we describe a flexible DFT generation frame-

work that compiles a matrix formula for a DFT algorithm into

a synthesizable Verilog description of an efficient hardware

implementation. By mathematically expressing algorithms and

architectural parameters (such as parallelism) in the same

framework, we are able to generate automatically a wide range

of implementations to meet user-specified high-level design

preferences.

II. BACKGROUND

An n point discrete Fourier transform (DFTn) is the matrix-

vector multiplication

y = DFTn x, DFTn = [e−2πjkℓ/n]0≤k,ℓ<n, j =
√
−1.

The n point complex input and output vectors are x and y, and

DFTn is an n × n complex matrix. We consider two-power

values for n (i.e., n = 2k).

Computation of the DFT by direct matrix-vector multipli-

cation requires O(n2) operations. Well-known fast algorithms,

called fast Fourier transforms (FFTs) reduce the operation

count to O(n log n). We view an FFT algorithm as a factor-

ization of DFTn into a product of structured sparse matrices.

We compactly express their structure using the Kronecker (or

tensor) formalism [2]. The Kronecker product is

An ⊗ Bm = [ak,ℓBm]0≤k,ℓ<n, for An = [ak,ℓ]0≤k,ℓ<n.

Of particular interest is Im ⊗ An, which is a block diagonal

nm × nm matrix with Am along the diagonal:

Im ⊗ An =







An

. . .

An






.

Using this notation, we connect FFT algorithms (i.e., pro-

cedures for computing the DFT) with explicit matrix formulas

that represent the algorithm’s computation. In this work, we

consider two fast Fourier transform algorithms:

DFTrk = Lrk

r

(

k−2
∏

ℓ=0

(Irk−1 ⊗ DFTr) Tn
ℓ

(Irℓ ⊗ Lrk−ℓ

rk−ℓ−1)(Irℓ+1 ⊗ Lrk−ℓ−1

r )
)

(1)

(Irk−1 ⊗ DFTr) Rrk

r

DFTrk =

(

k−1
∏

ℓ=0

Lrk

r (Irk−1 ⊗ DFTr) Tn
ℓ

)

Rrk

r (2)

In the above, multiplying a vector by a permutation matrix

Ln
m corresponds to a applying a stride-by-m permutation to

the vector. The “twiddle” matrix T is a diagonal matrix that

is characteristic of DFTs. Multiplying a vector by Tn
ℓ scales

each element of the vector by the corresponding element on

Tn
ℓ ’s diagonal.

Equation (1) is a variant of the Iterative Cooley-Tukey

FFT, and equation (2) is known as the Pease FFT. Both

are iterative algorithms parameterized for vectors of length

rt (where r is known as the radix). Both algorithms are

highly regular, making them well-suited for practical hardware

implementations (as we will discuss in Section III).



Bn Anx y

(a) An · Bn

A2

A2

x0

x3

x2

x1

y0

y3

y2

y1

(b) I2 ⊗ A2

x0

x3

x2

x1

y0

y3

y2

y1

(c) L4

2

A2

A2

x0

x3

x2

x1

y0

y3

y2

y1

(d) A2 ⊗ I2

x0

x3

x2

x1

t0

t1

t2

t3

y0

y3

y2

y1

(e) T 4

ℓ

+

-

x0

x1

y0

y1

(f) DFT2

DFT2

x0

x3

x2

x1

i

y0

y3

y2

y1

DFT2

DFT2

DFT2

(g) DFT4 = (DFT2 ⊗I2)T 4

2
(I2 ⊗ DFT2)L4

2
.

Fig. 1. Examples of formulas and associated combinational datapaths.

III. FORMULA-DRIVEN COMPILATION

Matrix formulas can be implemented as combinational logic

directly. Figure 1 shows examples of mappings from matrix

formula constructs to their corresponding combinational im-

plementations. By combining these primitives, we can build

the combinational datapaths corresponding to equations (1)

and (2). (A small DFT4 example is given in Figure 1(g).)

However, as the size of the DFT grows, a combinational

datapath quickly becomes prohibitively expensive. In order to

build practical implementations, we must exploit regularity in

the DFT computation to reuse portions of the datapath in a

sequential fashion.

As an overview, our automated design flow from formula

to hardware is comprised of three major stages:

Formula Generation. First, based on the desired transform

size, the formula generation stage selects an algorithm and

represents it as a formula. This task is completed by filling in

the appropriate parameterization (i.e., rt) into Equation (1)

or (2). We consider this to be an “algorithmic” formula,

because it contains a description of the procedure, but it does

not yet explicitly describe the architecture for implementing

it.

Formula Optimization. Next, in the formula optimization

stage, high-level resource preferences and architectural param-

eters are provided along with the algorithmic formula. This

portion of the flow produces a new formula that describes

both the algorithm and the architecture that will perform it.

By formally representing architectural parameters within the

matrix formula, we enable a high-level restructuring of the

algorithmic formula to include an implicit specification of

architecture. Once this step of the design flow has completed,

the architecture is completely specified, and can be directly

translated into a hardware design.

RTL Generation. The final portion of our design flow maps

the architectural formula into register-transfer level (RTL)

Verilog. This mapping is done in a straightforward manner;

this stage simply translates from an abstract representation into

the RTL abstraction.

n

m × n

.
.
.

An

n An

n An

(a) No streaming reuse:
Im ⊗ An.

n An

… 

m cycles

(b) Full streaming
reuse: (Im ⊗sr An).

n An

… 

mn/w cycles

n An

… 

.
.
.

w

(w
/n

) b
lo

c
k

s

(c) Partial streaming reuse: Imn/w ⊗sr
`

Iw/n ⊗ An
´

.

Fig. 2. Examples of streaming reuse.

IV. FORMULA OPTIMIZATION

In this paper, we expand on the details of the formula

optimization stage with a focus on the formula-level represen-

tation of architectural parameters. This is the most important

concept in our framework—it is the key to generating designs

across a wide cost/performance tradeoff space. Discussion of

the complete framework can be found in [3].

The goal in this stage is to exploit the high degree of

regularity exhibited by algorithms (1) and (2) through datapath

reuse. By controlling the parameters of reuse at the formula-

level, it is possible to control the tradeoff between cost

and performance of an implementation at a fine granularity.

Currently, we focus on two types of reuse architecture.

Streaming. A combinational interpretation of the matrix

Im⊗An leads to m parallel instances of An. Alternatively, we

can choose to interpret this matrix as reuse across time where

data elements stream through a single instance of An over m
cycles. We call this streaming reuse. To distinguish between

the two possible interpretations, we introduce a tagged tensor

symbol: ⊗sr. Now, Im ⊗ An indicates parallelism in space

(Figure 2(a)), and Im ⊗sr An indicates streamed reuse of An

(Figure 2(b)). In general, we have w/n parallel instances of

An, and the m × n data elements stream w per cycle over

mn/w cycles. This architecture (as shown in Figure 2(c))

would be written as

Imn/w ⊗sr (Iw/n ⊗ An).

Horizontal reuse. If a series of identical structures is

needed (e.g., AnAnAnAn or simply
∏

ℓ=0...3 An), rather than

duplicating An, we can iteratively reuse a single instance

of An. We refer to this as horizontal reuse. We distinguish

this interpretation of repetition by the annotation
∏hr

, which

indicates the inner computation kernel is to be reused iter-

atively. When horizontal reuse is applied to a kernel block,

its output feeds back to the input, and a control signal must

be generated to determine whether the block receives the

recirculating output values or a new set of inputs (at the start

of a new computation).



×

×

lookup

×

4

4

4 lookup

lookup

DFT
4

L
4

16

reg

Fig. 3. Horizontal-reuse Pease DFT′

16
with a streaming width of 4.

An important consideration with this type of reuse is

that the iterated kernel cannot vary with the iteration. For

example,
∏

ℓ=0...3(L
16

8
(I8 ⊗ DFT2)) can be reused this way,

but
∏

ℓ=0...3(L
16

2ℓ (I8 ⊗ DFT2)) cannot, because the stride of

permutation L16

2ℓ changes in each iteration. We consider one

exception to this rule: the parameter ℓ in twiddle matrices Tn
ℓ ,

because the operation performed (multiplication by a constant)

remains the same; only the constants (stored in a lookup table)

change. The Pease FFT (2), for example, is well-suited for

horizontal reuse because only Tn
ℓ changes from one iteration

to the next.

Example. A horizontally-reused radix 4 Pease FFT of size

16 with a streaming width of 4 is

DFT′
42 =

hr
∏

ℓ=0...1

L16

4
(I4 ⊗sr DFT4)T

16

ℓ .

The corresponding datapath is shown in Figure 3. This DFT
implementation assumes that input data arrives in radix-4 bit-

reversed order.

V. EVALUATION

The design flow described in this paper is implemented in

the following way: the formula-level portions are implemented

inside the Spiral generation framework [4], and the RTL is

generated by a standalone program written in Java. Designs

are synthesized and place-and-routed with Xilinx ISE 8.1,

targeting a Xilinx Virtex-II Pro FPGA (XC2VP100-6). In this

evaluation, real and imaginary data each have a 16 bit fixed

point data format (although the tool can support arbitrary fixed

point bitwidths). All designs in this evaluation use bit reversed

input data ordering. To provide a reference, we compare

to the corresponding cores from the Xilinx LogiCore Fast

Fourier Transform library v3.2 [1]. Xilinx provides cores at

three cost/performance tradeoff points: a streaming core (based

upon [5], and radix 2 and 4 horizontal reuse cores.

To evaluate the range of tradeoffs between cost and per-

formance, we generate horizontal-reuse architectures with

equation (2), and non-horizontal-reuse architectures with equa-

tion (1). For each architecture choice, we also consider mul-

tiple designs based on different radices and streaming widths.

Figure 4 shows the Pareto-optimal set of design points for

DFT256. (Results for other transform sizes are qualitatively

similar.) In this graph, the y-axis indicates the throughput

performance as “gap” (in µs, the steady-state time between

the starts of transform calculations). The x-axis is the area

(in slices). The points closest to the origin have the lowest

(circle): streaming + hor. reuse

(diamond): streaming onlyXilinx LogiCore

Spiral Generated

Area [slices]

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000

582 slices, 2 BRAM

671 slices, 3 BRAM

938 slices, 4 BRAM

1201 slices, 4 BRAM

1666 slices, 7 BRAM

Xilinx radix 2

Xilinx radix 4

Xilinx streaming

Gap [microseconds]

Fig. 4. Performance (gap) versus area (slices) for generated DFT256 cores
(in black, Pareto-optimal points only) and Xilinx LogiCore library cores (in
white).

cost and highest performance. In this plot, we use a diamond

shape if a design does not employ horizontal reuse; we use a

circle if it does. The three Xilinx LogiCore designs are marked

in white. For a few data points, we also label the number of

hard memory macros consumed on the FPGA. We see that our

generated designs achieve a very wide range of tradeoff and

can match the efficiency of the LogiCore library at comparable

cost-performance tradeoff regions.

VI. CONCLUSIONS

In this paper, we presented a flexible system for generating

hardware cores for computing the discrete Fourier transform.

We described the matrix formula framework used, including

the representation of architectural parameters. We evaluated

our generated designs on a Xilinx Virtex-II Pro FPGA to show

the range and competitiveness of our generated designs. The

underlying formula-based framework is extensible to support

other linear DSP transforms such as the discrete cosine trans-

form, discrete wavelet transforms, and their multi-dimensional

variants. Although we reported on fixed-point datapaths in the

evaluation, our RTL generation stage can also support floating

point formats.

REFERENCES

[1] Xilinx, Inc. Xilinx LogiCore: Fast Fourier Transform v3.2.
[2] C. Van Loan. Computational Framework of the Fast Fourier Transform.

SIAM, 1992.
[3] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel.

Discrete Fourier transform compiler: From mathematical representation
to efficient hardware. Technical Report CSSI 07-01, Center for Silicon
System Implementation, Carnegie Mellon University, 2007.

[4] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, special issue on ”Program Generation, Opti-

mization, and Adaptation”, 93(2):232–275, 2005.
[5] S. He and M. Torkelson. A new approach to pipeline FFT processor. In

Proc. International Parallel Processing Symposium, 1996.


