Generating FPGA-Accelerated DFT Libraries

Paolo D’Alberto* Peter A. Milder, Aliaksei Sandryhaila, Franz Franchetti
Yahoo! James C. Hoe, J&63M. F. Moura, and MarkusiBchel
{pdalbert@yahoo-inc.com Department of Electrical and Computer Engineering

Carnegie Mellon University
{pam,asandryh,franzf,jhoe,moura,pues¢i@éce.cmu.edu

Jeremy R. Johnson
Department of Computer Science
Drexel University
jjohnson@cs.drexel.edu

Abstract nels are utilized in different contexts under software oaint
Thus, the hardware—software implementation combines the

We present a domain-specific approach to generate high-flexibility of software and the performance benefits of hard-
performance hardware-software partitioned implementa- ware.
tions of the discrete Fourier transform (DFT) in fixed point In general, the determination of an optimal partitioning
precision. The partitioning strategy is a heuristic based strategy while satisfying a set of constraints is an NP-hard
on the DFT's divide-and-conquer algorithmic structure and problem [1] and several heuristic methods for its solution
fine tuned by the feedback-driven exploration of candidate have been proposed (e.g., [8,9]). In this paper, we present a
designs. We have integrated this approach in the Spi-domain-specific approach to generating high-performance
ral linear-transform code-generation framework to suppor hardware—software implementations of fast Fourier trans-
push-button automatic implementation. We present eval-form algorithms (FFT). The partitioning strategy is based
uations of hardware—software DFT implementations run- on heuristics derived from the FFT’s divide-and-conquer al
ning on the embedded PowerPC processor and the recon-gorithmic structure and further refined by feedback-driven
figurable fabric of the Xilinx Virtex-1l Pro FPGA. exploration of candidate designs.

In our experiments, the 1D and 2D DFT's FPGA- The discrete Fourier transform (DFT) is an important
accelerated libraries exhibit between 2 and 7.5 times highe primitive underlying many DSP applications. Fast algo-
performance (operations per second) and up to 2.5 timesrithms to compute the DFT—called FFT algorithms—have
better energy efficiency (operations per Joule) than the been studied extensively and they are known to exhibit a
software-only version. regular structure (i.e., an FFT algorithm decomposes & larg
DFT into many smaller DFTSs recursively). From this gen-
eral structure, we infer that the hardware acceleratedekern
must be in the form of throughput-optimized DFT cores for
small problem sizes. When considering two-power prob-
.) lem sizes (i.e., DFTs o2" points), we only need to con-

The goal of a hardware-software_ part_ltloned implemen- giger two-power sized DFT kernels (i.®FTsx). By off-
tation is to achieve the fast execution time of a hardware |pading the appropriate kernels into hardware, the soéiwar
implementation while retaining the flexible programma- receives the benefit of hardware acceleration and yet can
bility of a software implementation. Typically, the most || compute arbitrary (sized) DFTs on top of the available
computation-intensive kernels that are conducive to hard-yerne|s. Different kernels synthesized in hardware yiéfid d
ware acceleration are extracted from an algorithm and real-grant performance (e.g., operations per second) and-neces

ized as hardware, while the remaining computations are carjiate different amounts of resources (e.g., logic or numbe
ried out in software. In such a scenario, the hardware ker- ¢ BRAM).

*The author worked on this project during his post-doctdieitewship As a consequence, the DF_T partitioning prpblem be-
at the ECE department in CMU comes the problem of selecting the appropriate set of

1 Introduction

throughput-optimized two-power sized DFT cores to sat- and conclude in Section 7.
isfy a given resource constraint (logic, power, energy)evhi

maximizing a scalar metric, such as performance. We?2 Related Work
present our solution to this problem in two parts. First,

in what we call the forward design problem, we make use Companies like XtremeData and DRC are position-
of the Spiral [14] generator fr_amework to_autqmatically ing FPGAs on the fast memory interconnects of high-
produce a hardware—software implementation given a pre-performance PC workstations. These technologies promote
specified partltlon_lng str_ategy, in our case defined by the se 5 hew computation paradigm with FPGASs as first-class pro-
of DFT cores available in hardware. These hardware coresgessing elements alongside of traditional microprocessor
are generated using Spiral [12,13] and are often faster and - ap algorithm will nevertheless need to be partitioned—
smaller than other available implementations. Second, Wejgealy with performance-critical kernels in hardware and
solve the inverse design problem: given the desired con-conirgl-intensive kernels in software—to take advantage of
straints and an objective function, select the optimal et 0 {hese new hybrid hardware—software platforms; an algo-
two-power-sized DFT cores to include in hardware. To- (jihm needs this partitioning because 1) not all sectioms be
gether, the overall design generation problem is solved byefi from hardware acceleration and 2) hardware accelera-
first solving the inverse design problem by emulating the org may requirmewhardware data paths that are difficult
hardware cores (i.e., without synthesizing any DFT cores) {, synthesize onto an FPGA.
and then the resulting forward design problem, given the The hardware—software partitioning problem is based on
candidate hardware cores. In solving the inverse designie apility to determine and isolate the part of a computa-
problem, a simple scalar optimization metric (€.g., "TUBM tiqn that could be realized into specialized hardware, for
is used to maximize the performance for a single DFT prob- \yhich we could improve performance, energy, size or any
lem size. The scalar metric can also be defined as the avergiyer composed measure. The general hardware—software
age performance over multiple problem sizes (to optimize y4titioning problem has been shown to be NP-hard [1]. Ef-
a DFT library) or a composite function that takes into ac- ficient heuristic partitioning procedures have been stiidie
c_ount a combination of performance, power, and logic cost (e.g., [8,9]). In these works, the most difficult challenge
simultaneously. is in choosing the appropriate granularity of represeoiati
As a demonstration, we present experimental resultsin the computation graph; for example, a node can repre-
of applying our automatic generator to create hardware—sent an instruction, a loop, a function call, or a module.
software implementations of the DFT for the Xil- This issue is addressed by system level design languages
inx XUP2VP development board with a Virtex-ll Pro such asSpecSyn5, 6]. The development frameworks for
XC2VP30 FPGA. The 1D and 2D DFT problems of two- these languages deploy search techniques and implementa-
power and non-two-power sizes are partitioned into soft- tion strategies based on the ability to represent and manipu
ware (running on one of the two PowerPC cores in the late specific solution features at various levels of abttrac
FPGA) and hardware (comprised of the DFT cores instanti- and where the user is always welcome to interact during the
ated in the reconfigurable fabric). The specific partitignin design process.
strategy to be decided in these experiments is which two The subject of this paper is the domain-specific parti-
two-power DFT kernels, ranging between sizeto 210, tioning of the DFT where high-level algorithmic knowledge
must be synthesized in hardware to maximize a single prob-greatly simplifies the viable implementation space. There
lem’s performance or the average library performance. Ourhave been other scenario-specific partitioning methods de-
evaluation includes the optimization of runtime, energgt an veloped for image processing (e.g., [16]), scalability of a
power, and thus their Pareto tradeoff. In this paper, we fo- design (e.g., [19]), reactive systems (e.g., [17]) andaust
cus solely on hardware—software solutions for embedded-processor applications (e.qg., [7]).
system implementations; for example, see [14] for high-
performance software solutions or [12,13] for custom hard- 3 Background
ware solutions.

Synopsis. In Section 2, we briefly survey the related We provide the necessary background on the 1D and 2D
work. In Section 3, we present the necessary backgroundDFT, FFTs, the program generator Spiral, and the Virtex-II
for the DFT, Spiral and our evaluation platform. In Sec- Pro platform.
tion 4, we first present the forward design problem of how DFT and FFT. The DFT is a matrix-vector multipli-
to generate a concrete implementation from a DFT formula cationz — y = DFT,, z, wherez,y are the input and
and a partitioning decision. In Section 5, we present the in- output vector, respectively, of lengih andDFT,, is the
verse design problem of arriving at the optimal partitignin - n x n DFT matrix, given byDFT, = [wro<k.i<n,

strategy. We present our experimental results in Section 6w,, = exp(—27j/n), j = v—1.

Algorithms for the DFT are sparse structured factoriza- how to modify the algorithm, using a dynamic program-
tions of the transform matrix [15]. For example, the Cooley- ming search. Eventually, this feedback loop terminates and
Tukey fast Fourier transform algorithm (FFT) can be written outputs thebestimplementation found. The entire process
as is depicted in Figure 1.

Spiral takes a similar approach to generate hardware im-
DFT,., — (DF Ty, ®@10) Dy (I, @ DET,) L. (1) plementations of transforms, currently restricted to tiFgD
[12]. In this case a model is used to aid the feedback driven

Here, I, is them x m identity matrix; D,, ,, is a diagonal optimization [11].

matrix, andL*" is the stride permutation matrix, both de-

m

pending onm andn (see [15] for details). The Kronecker, DSP transform (user specified)
or tensor product is defined as ‘
AR B = Bl for A = . 2
® [ak‘.ﬁ]k,e [ak’e] () Algorithm Formula Generation controls
For example, Level Formula Optimization
algorithm as formula
DFT in SPL language :E»
n £
I I tati mplementation controls s
I,, ® DFT, = NG G
DFTn (SPL Compiler) Code Optimization _g
im) (I:e“r:v:)(-:nr:g;mn (};
Similarly, the 2D DFT of an input of sizex x n is given by _ 1 t_p
a matrixDFT,, ., that, using the row-column method, can Evaluation SR . formenoe
Level Performance Evaluation
be broken down as
DFT,.xn — (DFT,, ®I,)(I,, ® DFT,). 4) ‘
optimized/adapted implementation
Both (1) and (4) represent divide-and-conquer algo-
rithms. For example, (1) asserts thd T ,,,,, 2 can be com- Figure 1. The code generator Spiral
puted in four steps by first permutingwith L)"", dividing
the computation inton consecutiveDFT,, subvectors of Platform: Virtex-Il Pro. We demonstrate and eval-
lengthn (see (3)), scaling wittD,,, ,,, and finally dividing uate our approach by generating hardware-software parti-
the computation inta DFT,,, to subvectors at stride. tioned implementations of the DFT for the Xilinx XUPV2P

In fixed-point implementations, scaling is often used to development board, which contains the Xilinx Virtex-Il
avoid overflow. This is formally captured by replacing Pro XC2VP30 FPGA. The software portion of the parti-
aboveDFT,, with %DFTn in the formulas above. In par- tioned implementation is executed on one of the two Pow-
ticular, every so-calletiutterflyDF'T, is then succeeded by erPC405 processor cores embedded in the FPGA, the hard-
a scaling of% (i.e., each vector element is shifted right by ware data path of the partitioned implementation is mapped
one bit). onto the FPGA's reconfigurable fabric. The hardware and

Spiral. Spiral [14] is a program generation and opti- software communicate through the DSOCM (data-side on-
mization system for transforms. In Spiral, the formalism chip memory) interface in the Virtex-1l Pro architecture. A
above is called SPL (signal processing language); a decomblock diagram of this arrangement is shown in Figure 2. We
position like (1) is called aule. For a given transform, Spi- briefly elaborate on the relevant platform parameters.
ral recursively applies these rules until all transformgeha The embedded PowerPC 405 processor is a 300MHz
reached a pre-defined basic problem size (often 2). Thesén-order pipelined processor supporting integer openatio
rules are then compiled to generate one algorithm repre-only. The processor can access 512 MByte of DRAM
sented as a matrix formula. There are many formulas foron the XUPV2P board with a bandwidth of approximately
each transform due to the choices of expansion. For ex-80MByte/second. Each PowerPC processor is also served
ample, in (1) different factorizations can be chosen (i.e., by separate 1-cycle 16-KByte instruction and data caches.
differentm andn). The formula is then structurally op- We run embedded Linux 2.4.27 on the PowerPC with the
timized using a rewriting system, which performs formula peripherals necessary to enable remote telnet through Eth-
level vectorization, parallelization, and loop optimipats, ernet (i.e.,openssh In this setup, the main Spiral engine
if needed. Finally, the resulting formulais compiled intea is running on a separate workstation host. Executables for
tual C code or Verilog. Thperformanceof the implemen- the PowerPC processor are generated, compiled, and linked
tation (e.g., runtime, power, energy, error) is measured oron the remote host and communicated to the XUP board via
estimated and fed back into a search engine, which decide&thernet.

ticular, I,,, @ DFT,, (see (3)) indicates: data parallel appli-
oSl t00 Metcec cations ofDF T, to a vector of lengthnn. In hardware, for
W core a Wldg vector tha_t is pre_sented_seque_nthlly as a stream of

100 MHz data flits, we can instantiate a single pipelined implementa
F tion of DF'T,, and reuse itn times for the complete vector.

memory Using the known identity

controller

¥ Virtex-1l Pro FPGA DFT,, ®I, = L""(I, ® DFT,,) L™, (5)

¥
to off-chip DDR DRAM we can converDFT,, ®I, into the same form plus two

data permutations to be handled in software; these permuta-
tions do not allocate extra memory space because they man-
age data movement through the temporary buffers used by
the hardware cores.

The Virtex-1l Pro XC2VP30 FPGA has 13,969 reconfig- The Spiral hardware core generator currently only gener-
urable slices, 136 18-bit hard multipliers and 136 2KByte ates DFT cores of two-power problem sizes. However, us-
BlockSelect RAMs (BRAMs). The DSOCM interface in ing (1), we can decompose the problem for other sizes into a
the Virtex-1l Pro architecture allows the PowerPC proces- two-power portion and a non-two-power portion. Then, the
sor to memory-map up to 16 BRAMs in the fabric with 158 hardware can accelerate the former, while the latter portio
MByte/sec and 198 MByte/sec in read and write bandwidth. must be implemented in software. We will present experi-
The reconfigurable fabric is clocked at the frequency of the mental results for this type of problem.

Figure 2. Virtex Il Pro: hardware—software
platform for experiments.

DSOCM interface (LO0OMHz). All of our FPGA configura- To summarize, based on an analysis of the DFT formula
tions are created using Xilinx EDK tools. structure, we can restrict our choices of hardware cores to

different sized streaming pipelined DFT kernel implemen-
4 Automatic Partitioning of Transforms tations. In this restricted partitioning problem, the ke d

gree of design freedom is in choosing the appropriate set of
In this section, we explain the automatic partitioning of DFT kernel sizes to be synthesized into the available FPGA

the DFT for a given set of hardware accelerators. Further-"€S0urces in order to maximize the desired metric. For most
more, we explain how we map the (partitioned) formula into pgrformance met_rics, this means Choosing the set of kernel
inter-operating hardware and software. In this paper, we re Sizes that maximizes the computation off-loaded from the
strict the discussion to the 1D and 2D DFT, but the method- PowerPC processor into the FPGA fabric.
ology is applicable to the domain of linear transforms. L.

To generate partitioned implementations for a given 4.2 Partitioning: Formal method
transform, the Spiral system searches over a space of candi- N .
date algorithms that compute the transform. Differentalgo Ve use a rewriting system [3] that constructs partitioned
rithms lead to different hardware—software partition bwun ~ FFTS for a given DFT. The partitioning algorithm is en-

breakdown rules such as (1). The input to the rewrite sys-
4.1 Partitioning: Idea tem is a transform tagged “to be partitioned”, and a list of

available hardware cores. The output is one or a set of par-

Fast divide-and-conquer algorithms for the DFT are fitioned formulas. - o
equivalent to the recursive application of breakdown rules ~ 129S- Throughout the rewriting process, partitioning in-
like (1) and (4) (for 1D and 2D DFTSs, respectively). Both formation is propagated usinggs We introduce two tags:
rules compute multiple smaller 1D DFTs recursively and A and A .
combine their results. The structure of these breakdown
rules directly suggests a good partitioning strategy, mame
to compute the subproblem3FT,, and DFT,, in hard- A formula A tagged withpartition needs to be partitioned;
ware, and to let the software orchestrate the conquer stephowever, its partitioning is not yet known. For a formula
Depending on the size aof» andn, DFT,, and DFT,, A that is not tagged no further rewriting needs to be done

partition HW

may need to be further factorized to use smdb@fT hard- and it is implemented in software. For a formulatagged
ware kernels that can fit within the available FPGA logic with HW, this decision has been made atds mapped to
resources. hardware cores.

In all of the factorizations, thBFT kernels occur in the Rewriting rules. In order to extract hardware-mappable

context of a tensor product with an identity matrix. In par- sub-formulas, we utilize a set of rewriting rules summatize

removed, and all subformulas are either untagged or tagged
Table 1. Rewriting rules for hardware— as “HW".
software partitioning. The rewriting system contains three rule setshrBak-
down rules(1) and (4), 2)partitioning rules(8)—(12), and
A — A Softwareonly (6) 3)thecleanup rule(6).
mn Example. We show a partitioning example of a
DFT,,,.., wherer is a small odd prime number (for in-

A — BC Break down (7)
;ﬂn mﬂ stance 3 or 5), angh andn are two-powers (e.gm;m =
A g’ 1 Distributi 24). We assume the availability of two streaming hardware
\E - \B_/ istribution ®) cores,@DFT,,, andl, ©DFT,. The input to our rewrit-
partiion partition parttion ing system is the tagged problem specification,
DFT. @I, — Lyt (I, @ DETp) L™ If DFT,, in HW
iti DFTnLnr .
partition HW
(9) partition
w - E,T_"L@" If DFT, notin HW The rewriting system first applies (1), producing subprob-
partition partition lems of sizemn andr. Then, the partitioning rule set is
(10) applied. In the next breakdown step, the system applies (1),
Iy ® DFT, — I, DFT,, If DFT, in HW reducing the problem of sizen into m andn. The parti-
partition HW tioning rule set is applied again, and finally, the cleanue ru
(12) (6) is applied, leading to the partitioned formula (13) (see
I,, ® DFT, — I,, ® DFT,, If DFT,, notin HW in Figure 3). The search space of all partitioned formulas is
~ S~ obtained by enumerating all possible choices of parameter-
partition partition A i . .
(12) izations whenever (1) is applied.

Next we explain how a partitioned formula like (13) is
mapped to hardware and software.

in Table 1. For example, rule (8) distributes the partitiag t
across factors of a product; rule (9) implements the iden-
tity (5), effectively mappingDFT,, ®I, to the form (3)
compatible with streaming pipelined DFT cores. Note that
any rule where the left side is untagged (as (1) and (4)) can
be applied “inside” a tagged expression, leaving the tag un-
changed.

Base cases. When the desired set of hardware DFT ker-
nel sizes is known, those DFT kernels are encodduhas
caseawhich cannot be broken down further. The base case
rule (11) matches subformulas of the forfp, ® DFT,,
whereDFT,, is a hardware supported DFT kernel size. This
is because a streaming pipelined DFT core efficiently han-
dles any number of consecutive, data-parallel application
to an input stream.

Lastly, the software termination rule (6) is the rule in-

4.3 Software and Hardware Generation

Mapping a partitioned formula like (13) to an FPGA-
accelerated program for the PowerPC requires three steps:
1) generating software for the untagged parts, 2) gengratin
the required hardware designs, and 3) interfacing with the
accelerators from within the generated software.

Software. We use the standard fixed-point code genera-
tion process of Spiral [4,14] to generate software implemen
tations for the untagged parts of a formula. The hardware
portions of the formula are dispatched to the DFT cores in
the FPGA fabric via a specialized hardware function-call
interface.

Hardware. We use Spiral's DFT IP core generator
[12,13] to generate hardware cores implementing a stream-
dicating that everything that cannot be further rewritten i Ing version Ofly, ® DFT" for a two-powern. For a DFT

core of a given size, it is possible to compute the DFT of a

implemented in software. This rule is used when no other . : . ,
: . smaller two-power size by interleaving the smaller vestor

rules apply, ensuring that a subformula is mapped to hard- . . Lo
elements with zero elements (i.e., up-sampling in timed; th

\;v;isrteexlenever beneficial (e.g., determined by the feedbaCkresults are in the leading elements of the output vectar (i.e

- . . . periodic in frequency). In other words, each instantiated
Rewriting process. The input to the rewriting system is I id irtual for th
a tagged transform, for instance DFT,, core actua ly provides a set wirtua ‘cores or the
' smaller DFTs of sizes/2,n/4, etc. The disadvantage of

DFT,, or DFT,,xn. using the virtual cores is that they have the same latency as
~—~— computing the larger native-sized DFTs. Fortunately, our
primary performance concern is in the throughput of re-
In a final partitioned formula, the tag “partition” has been peated DFT computations. By overlapping multiple DFT

partition partition

DFTynr — (DFT, ®@Lnp) Dynn { [Ir @ (L7 (1, @ DFT,,) L) | Doy o (I, @ DET,,)LV} LI (13)
— —— ———

m

partition HW HW

Figure 3. DFT,,,, partitioned for streaming hardware cores I, ® DFT,, and I ® DFT,,. m and n are
two-powers and r is a small prime.

calculations in flight, we can hide the effect of the extrala- 5 Optimizing an EntireLibrary
tency completely and see no throughput penalty when using
aDFT,, core to compute problem sizes downvipd.

Interface. Figure 4 shows the architecture of two hard- ~ So far, we have shown, in a forward design problem,
ware cores accelerating the PowerPC. The PowerPC is ifhow to generate a partitioned implementation for a given
control, processing data residing in the main memory. It DFT and a given set of hardware cores. Next we discuss
communicates with the hardware cores via the DSOCM the inverse design problem of determining the optimal set of
bus, which is used to send and receive data, as well as conhardware cores based on a performance metric and resource
trol information. To initiate a DFT calculation, the Pow- constraints. The overall optimized design generation {prob

lem is solved by first solving the inverse design problem and
then the resulting forward design problem.

PPC 405 The straightforward approach to an inverse design prob-
ocm bud lem is to solve many forward design problems and search
v for the best solution. This approach has been used in Spi-
interface ral to generate optimized software-only implementatidns.
VWBRAM BRAM is possible since software code generation and evaluation
[|| convor ||][] are fast enough to enable a feedback-driven optimization
loop. However, it is impractical to let Spiral generate and
R DR try out all sets of hardware cores admissible under a speci-
| DFT 7'y fied area/power budget since synthesis takes on the order of
"| core 1 hours for each trial.
» DFT Fortunately, the timing behavior of DFT cores is ex-
core 2 tremely predictable, resembling a delay buffer of a prégise

known delay (a function of the size of the DFT). For perfor-
Figure 4. Architecture of the generated hard- mance evaluation in Spiral's search-based feedback loop, a
ware DFET IP cores. special version of the DFT software is used on the Pow-
erPC processor. The timing software faithfully perfornis al
software instructions including loads and stores to mem-
ory (through caches) and the BRAM-based hardware in-
erPC writes the DFT input data into BRAM and sets a bit terface. However, the expected computation delay of the
in the control registry to select the desired core Sizel(alrt DFT core invocations iS emu'ated in Software using Cyc|e
or real) and initiate processing. The selected DFT core be-counters. This enables us to explore the performance space
gins streaming the data from the input BRAM, through the of different DFT core sizes without actually synthesizing
streaming DFT pipeline and returns the processed data intoyr downloading any actual hardware cores. Using this ap-
the output BRAM. Once all data is processed, the DFT core proximation, we can fully explore the available hardware

sets a ready status bit in the control registry polled by the core choices in typically a few hours (up to 30 minutes per
PowerPC. The PowerPC begins retrieving the data from thenardware-core configuration).

return BRAM buffer. o »))
We have empirically verified that this modeling approach

In order to obtain full streaming utilization, the PowerPC is sufficiently accurate to support meaningful design space
loads data into the next buffer and retrieves the previous re exploration (e.g., Figure 5). The model predicts execution
sult while the hardware core is processing the current datavery well especially for in-cache DFT sizes less than 512.
set. The BRAM interface implements a ring buffer for 4 For the larger, out-of-cache sizes, we have seen a maximum
sets of data, allowing 4 DFT calculations to be in flight con- error of 15%, but the model accurately estimates the perfor-
currently to hide latency. mance/energy trends.

DFT Performance DFT Energy Efficiency
[Mop/s] [Mop/J]
600 400

® Modeled Performance

<© Measured Performance 350

® Modeled Efficiency

<& Measured Efficiency
500
300

400
250

300 200

150
200

100
100

50

T T T T T T T T T T 1 0r T T T T T T T T T T 1
4 8 16 32 64 128 256 512 1024 2048 4096 8192 4 8 16 32 64 128 256 512 1024 2048 4096 8192
problem size problem size

Figure 5. Quality of our performance and energy efficiency mo del. The closer the lines the better.

5.1 Pruning The Search Space 6 Experimental Results

In this section, we evaluate our approach on the Xilinx

For a given transform size, there are exponentially manyVirtex—II Pro FPGA with embedded PowerPC processor by

formulas. In addition, allowing any combination of hard- .) . L
ware cores leads to a combinatorial explosion. To make Ourgeneratlng FPGA-accelerated DFT libraries optimized for

approach feasible we need to prune this search space in a ooth performance and energy efficiency. After specifying

dition to speeding up evaluation. We employ two pruning he e>_<per|mental setup, _We f|rst briefly consider the neces-
ideas. sary library components: Spiral generated DFT software li-

))) _ braries, Spiral generated hardware cores, and virtuascore

Choice of cores. Due to the overlap in functionality, 1a- Then, we evaluate a specific example of FPGA-accelerated
tency, and energy consumption arising from virtual cores, prT lipraries and discuss the tradeoffs between using one
some combinations of DFT kernel sizes are not beneficial core versus two cores. Finally, we evaluate in detail DFT
for joint mapping onto an FPGA. Specifically, the possibil- |ipraries accelerated with two hardware cores; we discuss
ity of using the virtual cores associated with each real DFT the tradeoffs of the hardware core choice in the perfor-
core dramatically reduces the number of sensible hardwargnance/area/power space. Again we stress that in all accel-
configurations. This claim is made specific in Section 6.2, erated libraries both the software components and the hard-
where a performance analysis of virtual cores is given. ware cores are Spiral-generated (“push-button”).

Dynamic programming. We reduce the algorithm In this work, we preserDFT implementations in fixed-
search space by taking advantage of the recursive naturgyoint precision (16 bits with 14 bits fractions). We imple-
of transform algorithms. Experiments show thlgthamic ment scaledFTs to avoid overflow. We do not address
programming(DP) is a viable method to optimize these al- the minimization of the error by using different algorithms
gorithms. The DP methodology is based on the assumptionin finite precision; however, in Section 6.4, we will experi-
that the performance of a subproblem does not depend ormentally address the issues of finite precision errorsrayisi
its context. For instance, this means that the performahce ofrom different algorithms and partitioning.

DFT, is assumed the same in the context{gf® DFT,, Performance metrics. We assume an operation count
or DF'T,, ®I,. of 5nlog,n for the 1D DFT,, and 5mnlog,mn for

To find the best solution for a given problem (say, the 2DDFT,,.,. We measureuntime performancen
DFT,), DP tries all applicable breakdown rules (in this pseudo Mop/s (mega-operations per second), computed
paper, Cooley-Tukey FFT (4) only). For each applicable as operations [ogluntime [us], andenergy efficiencyn
rule, DP first recursively finds the best solutions for its-sub pseudo Mop/J (mega-operations per Joule), computed as
problems and all rule parameterization (in our example, all operations [opJenergy [.J]. These metrics are scaled in-
DFT, andDFT,, with km = n). It then finds the best verses of runtime and energy, respectively, and thus pre-
solution for the original problemXFT,,) by evaluating all serve runtime and energy relations. In Pareto plots we
parameterizations of the breakdown rule and plugging in usenormalized runtimgns/op] (inverse of runtime perfor-
the best subproblem solutions that it has already found. All mance) vs. power [W] andrea[slices].
problems are cached after they are evaluated, accelerating Physical measurements. To obtain the required mea-
the search for any future overlapping problems. surement resolution, we perform the same computation

6.2 Accelerating Software with Hardware

Table 2. Performance [Mop/s], for problems of Cores
size 16—1024 on hardware cores of size 32—
1024. We now consider the first example of an FPGA-
problem size accelerated DFT library generated by Spiral. We choose
32 260 313 the performance impact of using one or both hardware cores
64 603 460 296 compared to a generated software DFT library.
128 739 603 439 230
256 866 739 585 313 135 Dope T ormance
512 980 866 726 396 178 74 700 —
1024 1092 980 858 476 220 96 A SW + DFT512
600 <© SW + DFT64 + DFT512

0 SW-only

500

multiple times. We measure runtime using the PowerPC’s #%®
cycle counter, and the power supplied to the board is de- 300
termined by measuring the supply current (at 5V) using an
Agilent 34401A digital multi meter. Both measurements are
acquired automatically and fed back to the Spiral searchen- '®
gine, closing the performance tuning loop (see Fig. 1). We 0 _ ' ' ' ' ' . . .
compute the energy as the product of measured runtimeand ¢ % 6 128 256 512 1024 2048 4096 8192

200

problem size
power.
Figure 6. Performance of Spiral-generated 1D
. DFT software accelerated by one or two hard-
6.1 Performance Evaluation of Software ware cores DFTg, and DFTs,,. Higher is bet-
and Hardware ter.

Single core. Accelerating the software implementation
Software. Spiral-generated floating-point and fixed- With a single core shows the same characteristic trend for

point software code is competitive with the best available €ach of the choices. For very small sizes, employing the
DFT software implementations across many platforms [2, hardware core does not speed up computation due to over-
14]. The 300 MHz PowerPC typically achieve on average Neéad and, there, the software-only library is faster. This i
100 pseudo Mop/s on in-cache DFT calculatidns. the case for. = 16 for the DF T4 core and fom < 64 for
theDFT5,, core.

When the problem size is between this “break-even”
point and the size of the hardware core, we observe a ramp-
up in which the highest performance is reached at the core’s
native size, for a speed-up of 2.6 times for= 64 and 5.6
times forn = 512. In this region all computations are done
" in hardware (via real or virtual cores), and software is only

used to route data in and out of the cores.
We observe a drop in performance for the first problem
e larger than the core size (= 128 for DFTg4, and
= 1024 for DFT5;5) to about two times the software
performance. For this size and larger sizes a significant
amount of the computation is done in software. Neverthe-
less, the hardware acceleration provides a speed-up of at
least two times for large in-cache problem sizes. Once data
does not fit into cache at = 8192, memory bandwidth be-
comes the main bottleneck and practically reduces all pos-

INote that the operation count does not comprise loads/storesx sible speedups. . . .
computations, loop bound computations and scaling. Thus, seean Two cores. Both single core configurations have weak
under-estimation of the number of operations actually issued spots: theDFTg4 core speeds up small sizes but provides

Har dwar e cores. We have shown Spiral-generated DFT
cores are competitive in performance and size with the Xil-
inx LogiCore DFT library for DFT sizes up to 1024 [12,13].
Table 2 reports the throughput performance (Mops/s) of the
streaming pipelined DFT cores, including when the cores
are applied to smaller problem sizes in the virtual mode
We observe that in each case fof2 andn /4 there is vir-
tually no performance penalty compared to the real core of
that size. The reason is that in these cases the performanc&Z
bottleneck is the data copy bandwidth of the DSOCM bus.
The extra latency incurred by virtual cores is fully hidden.
As a consequence, any two DFT hardware cores ofsize
andm (n > m) used for acceleration in larger problems
(i.e., when used in throughput mode) should be chosen to
satisfyn/m > 4.

only moderate speed-up for large sizes, and &l 5, software-only implementation.
core provides high speed-up for medium and large sizes

but cannot speed up small sizes. By employing a system DFT Performance

with both hardware cores, we leverage the positive aspects 2“5”;””5]

of both cores. Figure 6 shows that a system with two cores . e DETE
achieves the maximum performance of both single core Sys- 200 ¢ SW*DFT128 + DFT1024

. O SW-only
tems for each problem size.

150

6.3 Optimizing an Entire DFT Library |

100
Due to the nature of the 1D and 2D DFT algorithms (1) 50

and (4), we can speed up an entire library of two-power

and non-two-power sizes using two (or any other number or

of) hardware cores. However, there are multiple possible CRERISISSEIRIIEREEEEEEE
choices for the sizes of the hardware cores, which give dif- problem size

ferent performance characteristics and thus tradeoffghéor))

entire DFT library. Figure 8. Performance of Spiral-generated 1D

. . . i _ k _ k
We investigate these tradeoffs with respect to both per- DFTn with n = 3-2% and n = 5-2" accelerated
formance and energy efficiency. To compare the different PY different two-core configurations. Higher
libraries (i.e., different choices of cores) across aksjave is better.

useaverage normalized runtinfias/op] andaverage power Trade-offs and Pareto analysis. Choosing different

as metrics. This choice weighs all problem sizes equally. p51gware core pairs allows an exploration of trade-offs be-
Choice of hardware cores: Details. Figure 7 displays tyeen performance and power or FPGA area across a whole
the performance and energy efficiency behavior of & two- b jiprary, For instance, one can choose the set of hard-
power 1D and 2D DFT library for different choices of two \are cores that yields the fastest DFT library (averaged ove
hardware cores. ~all sizes) for a given slice or power budget.
Figure 7 (a) and (b) show that for 1D DFT, there is g e 9 shows that there is indeed room to trade run-

clearly a best configuration for each fixed problem size. time for area or power. We assume a 1D DFT library for
However, across all problem sizes, each configuration is thetwo—power sizes, — 64,...,2048. Each point represents

best at least twice. Choosing the best choice across ajlibrar y,e 5erage performance/power/area values for the whole
is not straightforward and depends on the targeted app“ca'library for different pairs of hardware cores. The software

tion context. only configuration is marked with a different symbol. Note

The shape of the energy efficiency plot is similar to the ¢ i the power data we subtracted the XUP2VP develop-
performance plot, with the notable difference that for $mal ,ant board's idle power consumption (3.8W).

problem sizes software is the most energy-efficient choice. Figure 9 (a) shows that there is a 4 times variation in both

Figure 7 (c) and (d) show the same evaluation f_or 2D area consumption and normalized runtime across all possi-
DFTs. The 2DDFT), ., has the same memory footprintas e configurations. Figure 9 (b) shows that there is also a 3

a 1D_D.FTW" Al SIzes larger than or equal &k x 128 do .__times variation in the power consumed by the DFT calcula-
not fit into cache, which leads to a performance degradation; ;< |n other words by allowing up to 3 times more power
for all choices of cores. As in the 1D case, smaller problem (or 4 times more are:a) to be consumed, one can speed up a
sizes are accelerated by hardware, but software-only is mor o1 iprary up to 4 times (averaged across the library). As
energy efficient. The latter efre.ct is more pronounced than there are many points between these extremes, we provide a
in the 1D case. Thus, the possible speed-up through FPGAfine-grain choice for adapting the performance and resource

accglerqtlon is smaller and the variance across diffest c usage of a whole DFT library to application-specific needs.
choices is less pronounced than in the 1D case.

Using two-power hardware cores we can also accelerate .
libraries of non-two-power sizes by computing two-power 6-4 ~Error Analysis
factors in hardware and the remainder in software. Fig-
ure 8 displays the performance for non-two-power problems Finally, we show experiments detailing the error behav-
DFT,, withn = 3-2% andn = 5 - 2%. In this situation, a ior of our generated hardware—software libraries. We ¥ollo
significant amount of computation—the radix-3 and radix- the error models for fixed-point DFTs [10, 18], specialized
5 kernels—is done in software. Nevertheless, using twoto our case of 16-bit precision with 14 fraction bits. We
hardware cores we obtain up to 2.5 times speed-up over a&ompare the software-only library to the hardware-soféwar

(a) 1D DFT Performance (b) 1D DFT Energy Efficiency
[Mop/s] [Mop/J]
400

800
® SW + DFT32 + DFT256
700 A SW + DFT64 + DFT512
<© SW + DFT128 + DFT1024

O SW-only

® SW + DFT32 + DFT256
A SW + DFT64 + DFT512
<& SW + DFT128 + DFT1024
O SW-only

350

300

600
500 250
400 200
300 150
200 100
100 50
0r T T T T T T T T 1 or T T T T T T T T 1
16 32 64 128 256 512 1024 2048 4096 8192 16 32 64 128 256 512 1024 2048 4096 8192
problem size problem size
(c) 2D DFT Performance (d) 2D DFT Energy Efficiency
[Mop/s] [Mop/J]
400 350
® SW + DFT32 + DFT256 ® SW + DFT32 + DFT256
350 A SW + DFT64 + DFT512 300 A SW + DFT64 + DFT512
< SW + DFT128 + DFT1024

<© SW + DFT128 + DFT1024
O SW-only

O SW-only

300 250
250
200
200
150
150
100
100 ¢
50 50 e
o—m—mm—""TTT T T T T T T T o————T— T T T T 7T T T T T T T T T 1
<+ © © 0 © N © N ¥ o T O T W © © © N © < 0 © © © N © N ¥ N T O T 0O © ©O © N ©
X x T x v ® = ® © ® © N © N © & © = 0 Xx x T x T O = ™ © ® © N © & v & O = ©
4 @+ X o X X x x x x x T x T & = & © A & @4 X o X x x x x x x T x T o = & o
< ©® © © © © o4 o X g X x X X X X < © o © © © o o X g X X X X X X
- - - o ® N © ¢ ¢ © ®© © © - - - ™ o N © ¥ T © w0 0 O
el © © N N N v el © © &N N N v
- - - o - - - o
problem size problem size

Figure 7. Performance and energy efficiency of 1D and 2D DFT so ftware accelerated by different
two-core configurations. Higher is better in all plots.

Power rformance Par
(a) Area / performance Pareto (b) Power / performance Pareto
average normalized runtime [ns / op] average normalized runtime [ns / op]

10 10
SW-only
A SW-only HW-swW a
8 8 HW-SW
. .
6 6
. .
4 4 PR
* * 00 * > -
.o o o
* 0 o *
) 2
o or :
0 2000 4000 6000 8000 10000 0 05 ! 15 2 25
area [slices] power [W]

Figure 9. 1D DFT Area/performance and power/performance tr ade-offs (one point is a normalized
performance for a whole DFT library and a specific set of hardw are cores). Points closer to the

origin are better in both plots.

libraries considered in the performance evaluation in Fig-
ure 7.
DFT SNR

[dB]
100

” %
60
40

® SW + DFT32 + DFT256
A SW + DFT64 + DFT512
<& SW + DFT128 + DFT1024
O SW-only

20

16 32 64 128 256 512 1024 2048 4096 8192

problem size

Figure 10. Signal-to-noise ratio (SNR) of
Spiral-generated scaled fixed-point DFT im-
plementations.

In Figure 10, we evaluate the signal-to-noise ratio
(SNR). We see that the software library and hardware—
software libraries have very similar SNR and hardware ac-
celeration does not introduce further error.

Figure 11 shows the maximum absolute error and the av-
erage absolute error. Figure 11 (a) shows that all considere
libraries behave similarly and stay well below the theereti
cal upper bound for the maximum absolute error of a fixed-
point DFT, given in [18]. We see up to 20% variation in
the error. This could be exploited to obtain low-error imple
mentations by using error as search metric in Spiral’s feed-
back loop. Figure 11 (b) shows that the average absolute
error saturates at aboRit 1°~3 - 10~?, which is the system
precision.

7 Conclusion

Architectures with tightly integrated FPGAs and general
purpose processors are starting to play an important role in
both embedded and high performance computing settings.
The tight integration makes it possible to offload fine and
coarse grain functionalities from processors to the FPGA
fabric, combining the strengths of both components.

In this paper we introduce an extension to the program
and hardware design generation system Spiral, that auto-
matically partitions DFT kernels across software and hard-
ware, and generates both components. In addition, our ex-

tension finds—under user-supplied resource constraints anollo]

performance metrics—a partition choice that optimizes an
entire library, not a single problem instance.

In our experiments on a Xilinx Virtex-11 Pro, the auto-
matically partitioned and generated FPGA-accelerated li-
brary has between 2 and 7.5 times higher performance and

(11]

up to 2.5 times better energy efficiency than the software-
only version.

Acknowledgment

This work was supported by DARPA through the Depart-
ment of Interior grant NBCH1050009 and by NSF through
awards 0234293 and 0325687.

References

[1] P. Arat, Z. Mann, and A. Oran. Algorithmic aspects of
hardware/software partitioningACM Trans. Des. Autom.
Electron. Syst.10(1):136-156, 2005.
P. D’Alberto, F. Franchetti, and M. iBchel. Perfor-
mance/energy optimization of DSP transforms on the XS-
cale processor. IRroceeding of the 2007 International Con-
ference on High Performance Embedded Architectures and
Compilers Lecture Notes in Computer Science, Ghent, Bel-
gium, Jan 2007. Springer.
N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robin-
son and A. Voronkov, editorgjandbook of Automated Rea-
soning volume 1, chapter 9, pages 535-610. Elsevier, 2001.
F. Franchetti, Y. Voronenko, and M.iBchel. Formal loop
merging for signal transforms. IRroc. of Programming
Language Design and Implementatj@hicago, Jun. 2005.
D. Gajski, F. Vahid, and S. Narayan. SpecSyn: an envi-
ronment supporting the specify-explore-refineparadigm for
hardware/software system designEEE Transactions on
Very Large Scale Integration (VLSI) Syster@€l):84-100,
Mar 1998.
D. Gajski, F. Vahid, S. Narayan, and J. Gong. SpecSyn: an
environment supporting the specify-explore-refine paradigm
for hardware/software system design. pages 108-124, 2002.
[7] J. R. Hauser and J. Wawrzynek. Garp: a MIPS proces-
sor with a reconfigurable coprocessor.AEGCM '97: Pro-
ceedings of the 5th IEEE Symposium on FPGA-Based Cus-
tom Computing Machinepage 12, Washington, DC, USA,
1997. IEEE Computer Society.
[8] A. Kalavade and E. Lee. A global criticality/local phase
driven algorithm for the constrained hardware/software par-
titioning problem. INCODES '94: Proceedings of the 3rd
international workshop on Hardware/software co-design
pages 42-48, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press.
B. Knerr, M. Holzer, and M. Rupp. Improvements of the
GCLP algorithm for SW/HW partitioning of task graphs. In
Prooceedings of the Fourth IASTED International Confer-
ence on Circuits, Signals, and Systepages 107-113, San
Francisco, CA, USA, Nov. 2006.
W. Knight and R. Kaiser. A simple fixed-point error bound
for the fast fourier transformlEEE Transactions on Acous-
tics, Speech, and Signal Processiry(6):615-620, Dec
1979.
P. A. Milder, M. Ahmad, J. C. Hoe, and M.UiBchel. Fast
and accurate resource estimation of automatically generated
custom DFT IP cores. IRroc. FPGA 2006.

(2]

(3]

(4]

(5]

(6]

9]

(a) DFT Maximum Error
[absolute error]

5.0

45 A SW +DFT64 + DFT512 ‘00\)“6 -
© SW + DFT128 + DFT1024 oo = 7 3.0
4.0 o sw-only e\'\°a\ e 0 SW-only
35 25
3.0 20
25
2.0 15
1.5 1.0
1.0
0.5
0.5
0.0r T T T T T T T T T T 1 00r
4 8 16 32 64 128 256 512 1024 2048 4096 8192 4
problem size
Figure 11. Error behavior of Spiral-generated scaled fixed-
[12] P. A. Milder, F. Franchetti, J. C. Hoe, and Migthel. Dis-

(13]

(14]

(15]

(16]

%10

® SW + DFT32 + DFT256

crete Fourier transform compiler: From mathematical rep-
resentation to efficient hardware. Technical Report CSSI
07-01, Center for Silicon System Implementation, Carnegie
Mellon University, 2007.

G. Nordin, P. A. Milder, J. C. Hoe, and M.iBchel. Au-
tomatic generation of customized discrete Fourier transform
IPs. InProc. of the 42nd Annual Conference on Design Au-
tomation 2005.

M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Ga, Y. Voronenko,

K. Chen, R. Johnson, and N. Rizzolo. SPIRAL: Code gen-
eration for DSP transform#®roc. of the IEEE, special issue
on "Program Generation, Optimization, and Adaptatign”
93(2), 2005.

C. van Loan.Computational Framework of the Fast Fourier
Transform SIAM, 1992.

C. Vicente-Chicote, A. Toledo, and P. Snchez-Palma. Im-
age processing application development: From rapid proto-

(b) DFT Average Error
[absolute error]

55 x10°

® SW + DFT32 + DFT256
A SW + DFT64 + DFT512
<& SW + DFT128 + DFT1024

(17]

(18]

(19]

64 128 256 512 1024 2048 4096 8192
problem size

point DFT implementations.

typing to sw/hw co-simulation and automated code gener-
ation. InPattern Recognition and Image Analysi®lume
3522 ofLecture Notes in Computer Scienpages 659—666.
Springer Berlin / Heidelberg, 2005.

K. WeiR3, T. Steckstor, G. Koch, and W. Rosenstiel. Exploit-
ing FPGA-features during the emulation of a fast reactive
embedded system. FRPGA '99: Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field pro-
grammable gate arrayspages 235-242, New York, NY,
USA, 1999. ACM Press.

P. Welch. A fixed-point fast fourier transform error anal-
ysis. |IEEE Transactions on Audio and Electroacoustics
17(2):151-157, Jun 1969.

C. Zhang, Y. Long, and F. Kurdahi. A scalable embed-
ded JPEG2000 architecture. Embedded Computer Sys-
tems: Architectures, Modeling, and Simulatiovolume
3553 ofLecture Notes in Computer Scienpages 334—-343.
Springer Berlin / Heidelberg, 2005.

