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Abstract— A wide range of hardware implementations are pos-
sible for the discrete Fourier transform (DFT), offering different
tradeoffs in throughput, latency and cost. The well-understood
structure of DFT algorithms makes possible a fully automatic
synthesis framework that can span the viable interesting design
choices. In this paper, we present such a synthesis framework that
starts from formal mathematical formulas of a general class of
fast DFT algorithms and produces performance and cost efficient
sequential hardware implementations, making design decisions
and tradeoffs according to user specified high-level preferences.
We present evaluations to demonstrate the variety of supported
implementations and the cost/performance tradeoffs they allow.

I. INTRODUCTION

The discrete Fourier transform (DFT) is one of the ubiq-

uitous building blocks in signal processing and other embed-

ded processing applications. Its computation exhibits a high

degree of regularity in structure, comprising recurring basic

kernels. On one hand, the theories behind efficient hardware

implementations have been studied extensively and are very

well understood [1]. On the other, creating practical imple-

mentations remains challenging in practice because it requires

combined sophistication in the mathematics of transforms as

well as in digital design.

When a design calls for a discrete Fourier transform,

designers most often resort to instantiating pre-designed li-

brary implementations. Ready-to-use DFT modules are in

the repertoire of nearly every technology vendor library—

whether ASIC or FPGAs. These library modules are designed

by specialists and generally attain optimum performance for

the amount of resources they consume. However optimized,

these static library modules can fall far short of optimum in

a given application context due to a mismatch in objectives.

For example, a static library module would offer exactly the

same level of performance regardless of how much surplus

logic resources are available. To address this limitation, Nordin

et al. [2] have made available a parameterized DFT module

generator that allows control over the level of hardware

parallelism such that the designer can make custom tradeoffs

between the performance desired and the resources consumed

in the generated module.

Given the well-understood regular structure of the DFT (and

other linear DSP transforms in general), one should be able to

fully capture the available design space in a synthesis system

to fully automate the generation of high-quality hardware

implementations. The parameterized generation engine in [2]

is a step in the right direction. However, this technology

is limited in that the engine is hard-coded for a specific

DFT algorithm (Pease [3]) and only exploits one particular

restructuring to derive the tradeoff in one specific dimension

of the overall design space.

In this paper, we present a formula-to-hardware synthesis

flow that accepts as input the mathematical representation of

a general class of DFT transform algorithms and is capable of

producing a wide range of correct hardware implementations

(in synthesizable RTL Verilog), including latency-efficient

iterative microarchitectures and throughput-efficient streaming

microarchitectures. The input representation is based on a

sparse-matrix formula language. Starting from pure mathe-

matical formulas, the synthesis process—comprising a set of

formal formula-level rewrite rules—makes hardware imple-

mentation decisions and tradeoffs according to user specified

high-level preferences. The outcome is a set of fully annotated

formulas that can be straightforwardly reduced to its corre-

sponding hardware sequential implementations. The wealth

of initial DFT formula choices and the rich combinations

of structural rewrite rules together yield the large space of

implementations attainable by this DFT synthesis framework.

Paper outline. Section II introduces the DFT transform and

the formula language and sketches a rudimentary synthe-

sis algorithm for combinational implementations. Section III

presents the flow from formula to hardware synthesis in two

parts: first, from formula to annotated hardware formula, sec-

ond, from hardware formula to sequential datapath. Section IV

reviews the synthesis flow by demonstrating two working

examples. Section V evaluates a wide range of DFT design

instances produced by our framework. Section VI discusses

prior work in hardware DFT implementations. Finally, Sec-

tion VII offers our discussion and conclusions.

II. BACKGROUND

Discrete Fourier transform. The discrete Fourier transform

(DFT) of size n is the matrix-vector multiplication

y = DFTn x,



where x and y are the input and output vectors of length n,

and

DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = exp(−2πi/n), i =

√
−1.

In this paper we only consider two-power sizes n.

Fast Fourier transforms. Computing the DFT of x by matrix-

vector multiply requires O
(
n2

)
operations. However, this can

be reduced to O
(
n log(n)

)
using well-known fast algorithms

(fast Fourier transforms or FFTs). An FFT can be viewed as a

factorization of DFTn into a product of sparse matrices. For

example (omitted entries are zero):

DFT4 =







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i







=







1 · 1 ·
· 1 · 1
1 · −1 ·
· 1 · −1







·







1 · · ·
· 1 · ·
· · 1 ·
· · · i













1 1 · ·
1 −1 · ·
· · 1 1
· · 1 −1













1 · · ·
· · 1 ·
· 1 · ·
· · · 1







Computing DFT4 x by multiplying the input x from right

to left with the four sparse matrices has a lower arithmetic

cost than multiplying by the dense transform matrix.

Each of the occurring sparse matrices has structure, which

can be used to express the algorithm using the Kronecker or

tensor product formalism [1]. For example, the factorization

above becomes

DFT4 = (DFT2 ⊗I2)D4(I2 ⊗ DFT2)L4,2. (1)

Here D4 = diag(1, 1, 1, i) is a diagonal matrix (called twiddle

matrix); In the n×n identity; Ln,m (for m divides n) the stride

permutation, which can be viewed as transposing an n/m×m
matrix stored in a vector in row-major order, formally:

i · (n/m) + j 7→ j · m + i, for 0 ≤ i < m, 0 ≤ j < n/m.

Finally, ⊗ is the Kronecker or tensor product defined as

An ⊗ Bm = [ak,ℓBm]0≤k,ℓ<n, for A = [ak,ℓ]0≤k,ℓ<n.

Generally, we write An to denote that A is n × n.

Formula language for FFTs. The above formalism can be

captured in a formal language that can be used to represent

FFTs using formulas. In Backus-Naur form, the language is

defined as follows (non-terminals are bold-faced):

formulan ::=formulan · · · formulan

| Ik ⊗ formulam where n = km
| formulam ⊗ Ik where n = km
| basen

basen ::= Dn = diag(d0, . . . , dn−1) | Ln,m | In | DFT2

This language is a subset of the signal processing language

(SPL) used in Spiral, a program generator for linear trans-

forms [4]. We will also refer to it as SPL in this paper.

Even though the language is small, a large class of different

FFTs can be expressed with it. We provide a few examples:

DFTnm = (DFTn ⊗Im)Dn,m(In ⊗ DFTm)Lnm,n (2)

DFTrt = Lrt,r

(
t−2∏

k=0

(Irt−1 ⊗ DFTr) Dn,k

(Irk ⊗ Lrt−k,rt−k−1)(Irk+1 ⊗ Lrt−k−1,r)
)

(3)

(Irt−1 ⊗ DFTr) Rrt,r

DFTrt =

[
t−1∏

k=0

Lrt,r (Irt−1 ⊗ DFTr) Dn,k

]

Rrt

r (4)

Equation (2) is the well-known recursive Cooley-Tukey FFT

and the standard choice for software implementations. The

others are iterative and suitable for hardware implementations.

Equation (3) is called the iterative FFT, and (4) is the Pease

FFT, which has perfect regularity across stages except for the

diagonal matrices Dn,k which depend on k. Both FFTs are

given for an arbitrary radix r, where the radix indicates the

size of the algorithm’s basic block. Lastly, Rrt,r is the radix-r
reversal permutation, known as the bit reversal when r = 2.

Formula to combinational datapath. There exists a natural

one-to-one correspondence between an SPL formula and a

combinational logic implementation. We demonstrate it for

different formula constructs Mn supported by the grammar:

• Mn = An ·Bn: The input vector x first passes through

a combinational module corresponding to B then another

module corresponding to A (Fig. 1(a)).

• Mmn = Im ⊗ An: The resulting matrix is a block

diagonal matrix that contains zero everywhere except An

repeated m times on the diagonal. In combinational logic,

the vector x passes through m parallel copies of A such

that each copy operates on a flit of n consecutive elements

from x (Fig. 1(b)).

• Mmn = An ⊗ Im: We can first rewrite this matrix

as Lnm,n(Im ⊗ An)Lmn,m (a known identity [1]) and

handle it as the product of three matrices (Fig. 1(d)).

• Mn = Ln,m: The corresponding reordering of the

vector x is achieved by reshuffling the busses that carry

the elements of x (Fig. 1(c)).

• Mn is diagonal: Each element of x is multiplied by a

corresponding constant (Fig. 1(e)).

• Mn = DFT2: This incurs the computations y0 = x0 +
x1 and y1 = x0 − x1 and yields the so-called “butterfly”

structure in Fig. 1(f).

Fig. 1 shows that it would be a straightforward task to

generate combinational logic for any formula in the SPL

language. For example, for the formula in (1), this compiler

would produce the datapath shown in Fig. 1(g). For general

n, the FFTs (3) and (4) would yield combinational logic

that is O
(
log(n)

)
in depth and O

(
n log(n)

)
in size. Such

combinational implementations are too expensive except for

small problem sizes.
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Fig. 1. Examples of formulas and associated combinational datapaths.

formula generation

DSP Transform

formula

formula annotation
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RTL generation
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Fig. 2. Block diagram of design flow. The dashed block contains the focus
of this paper.

III. FROM FORMULA TO HARDWARE

Our goal is to automatically generate various sequential im-

plementations of the DFT. Our formula language, as explained

in Section II, has no singular correspondence to sequential

hardware. In this section, we explain how we extend this

language to express sequential hardware elements needed

for efficient implementations. Then, we introduce a rewriting

system which takes a formula with hardware directives and

produces a hardware description formula. Lastly, we discuss

the process of compiling a hardware description formula to

a synthesizable RTL netlist. This flow is illustrated by the

diagram in Figure 2.
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A. Hardware Signal Processing Language

The datapaths associated with various DFT algorithms ex-

hibit a high degree of regularity. This regular structure gives an

opportunity to reuse portions of the datapath in two ways. In

this section, we examine both types of reuse and the language

extensions needed to support them.

Streaming reuse. As seen in Section II, the tensor product

Im ⊗An leads to a datapath with m data-parallel instances of

the block associated with An (Fig. 3(a)). We also can interpret

the tensor product as an indicator of parallelism in time in a

streaming fashion. Rather than having block An repeated m
times in parallel, we can build one physical instance of it, and

reuse it over m consecutive clock cycles (Figure 3(b)). We call

this streaming reuse. In order to distinguish between these two

meanings of the tensor product, we can tag the symbol ⊗sr in

order to indicate streaming reuse.

Additionally, it is possible to have partial streaming reuse.

For example, (I4 ⊗A4) can be broken down as (I2 ⊗sr (I2 ⊗
A4)), meaning that there are two An blocks in parallel, and

each operates on data over two clock cycles. A generalized

version of this situation can be seen in Figure 3(c). We use w
to indicate the stream width.

Horizontal reuse. In the previous section, we saw how data

parallel blocks could be vertically collapsed into one block.

Additionally, a series of identical blocks (such as
∏

An) can

be horizontally collapsed into one block, as seen in Figure 4.

We call this horizontal reuse. (Notice that An could be

streamed as well.) In order to distinguish between the two

meanings of
∏

, we tag the product term
∏hr

in order to

indicate horizontal reuse.

It is important to note that the terms in a horizontal reuse
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Fig. 4. Example of horizontal reuse.

product term cannot change from iteration to iteration, except

in the case of diagonal matrices. For example, (3) would

not be eligible, but (4) would. This is explained in detail in

Section III-C.

B. Rewriting System: From Transform to Hardware Formula

In this section, we describe a rewriting system that takes

a formula plus hardware directives and produces a hardware

formula, which is restructured and annotated such that it

directly corresponds to a sequential hardware implementation.

This process corresponds to the “formula annotation” segment

of Figure 2.

A hardware directive is a tag that indicates a desired feature

of the final hardware implementation. In order to indicate

streaming reuse, we define a streaming tag:

An
︸︷︷︸

stream(w)

This tag indicates that the contents of A should be restructured

such that the resulting hardware formula will be implemented

in a block that contains w input and output ports, with data

streamed at w elements per cycle. Figure 5 lists the rewriting

rules that perform this transformation. Each time the system

encounters a stream tagged formula, it attempts to restructure

the formula or propagate the tag downward. If a tagged

formula does not match any of these rules, the tag becomes

part of the hardware formula. In these cases, the compiler

(discussed in the following section) must explicitly know how

to build a data structure for the tagged formula.

Each of the rewrite rules given in Figure 5 has a simple

explanation:

• base: If the size of a matrix is the same as its stream

size, the stream tag is not necessary and can be dropped.

• product select: This rule selects whether to do horizontal

reuse or streaming.

• product and product HR: If a group of matrices is

tagged as streaming, the tag is propagated inward to all of

the individual matrices. This rule applies to both versions

of the product term
∏

.

name rule

base if k = w,

Ak
︸︷︷︸

stream(w)

→ Ak

product-select
∏

An
︸ ︷︷ ︸

stream(w)

→







A0 · A1 · · ·An
︸ ︷︷ ︸

stream(w)

if streaming

∏hr
An

︸ ︷︷ ︸

stream(w)

if hor. reuse

product An · Bn · · ·Zn
︸ ︷︷ ︸

stream(w)

→ An
︸︷︷︸

stream(w)

· Bn
︸︷︷︸

stream(w)

· · · Zn
︸︷︷︸

stream(w)

product-HR
∏hr

An
︸ ︷︷ ︸

stream(w)

→ ∏hr
An
︸︷︷︸

stream(w)

reuse1 if ℓk > w and k ≤ w,

Iℓ ⊗ Ak
︸ ︷︷ ︸

stream(w)

→ Iℓ/w ⊗sr
(
Iw/k ⊗ Ak

)

reuse2 if k > w,

Iℓ ⊗ Ak
︸ ︷︷ ︸

stream(w)

→ Iℓ ⊗sr Ak
︸︷︷︸

stream(w)

reverse Ak ⊗ Iℓ
︸ ︷︷ ︸

stream(w)

→ Lkℓ,k (Iℓ ⊗ Ak) Lkℓ,ℓ
︸ ︷︷ ︸

stream(w)

Fig. 5. Rewriting rules for generating hardware formulas.

• reuse1: If the size of A is less than or equal to the size

of the stream, the inner tensor product unrolls the correct

number of A instances such that the inner product is

exactly the stream size.

• reuse2: If the size of A is larger than the size of the

stream, the tag is propagated inward, and another rule

must restructure A to the right stream size.

• reverse: A property of the tensor product allows us to

reverse its order with strided access.

After rewriting, the resulting hardware formula may be

made of the following blocks: formulas (without tags),

streaming-reuse tensor products, horizontal-reuse product

terms, streamed diagonals, and streamed permutations (i.e.,

stride and bit reversal permutations):

A, Iℓ ⊗sr A,
∏hr

An, Dn
︸︷︷︸

stream(w)

, Ln,m
︸ ︷︷ ︸

stream(w)

, Rn
r

︸︷︷︸

stream(w)

.

In the following section, we will discuss how the hardware

formula, made of these five types of objects, is built into a

Verilog description.

C. Compiler: From Hardware Formula to HDL

The compiler takes in a hardware formula, as defined above,

and produces a synthesizable Verilog description of a circuit.

In this section, we explain how each of the possible forms of

the hardware formula is mapped.
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Combinational formula. Any portion of the formula without

a reuse tag can automatically be mapped into a combinational

datapath, as discussed in Section II. When the compiler

encounters this type of formula, it constructs a hardware

datapath and automatically pipelines the path by inserting

staging registers in the appropriate locations.

Specific streaming elements. We implement two elements

that are built directly from a stream-tagged matrix. The com-

piler has specific knowledge of how to generate these blocks:

• Streaming diagonal: A diagonal matrix scales each

element in the input vector by the corresponding value

from the diagonal of the matrix. In order to convert

this into a streaming hardware structure, we first need

w multipliers, where w is the stream width. Then, we

store the n values from the diagonal in w lookup tables,

which feed the multipliers with the appropriate data at

each cycle.

• Streaming permutations: A streaming permutation im-

plementation must reorder data in space and across differ-

ent clock cycles. Püschel et al. [5] prescribe an architec-

ture and an algorithm whereby an arbitrary permutation

can be constructed for an arbitrary streaming width w
(where both the vector length n and stream width w are

2-powers). The construction, sketched in Figure 6, uses

w dual-ported memory banks and configurable switching

networks at the input and output stages. For the relevant

permutations, the controls for the permutation block can

be computed cheaply from the flit number using only bit-

wise operators. For example, Figure 7 shows an imple-

mentation of L256,2 with streaming width w = 4. Because

this method works with a general class of permutations,

it is able to implement products of permutations (e.g.,

L8,4 · (I2 ⊗ L4,2)) as one self-contained permutation

module.

Finally, the compiler maps formulas tagged for horizontal

or streaming reuse to the appropriate structural hardware

construct:

• Streaming reuse: A streaming reuse tensor product

Im ⊗sr An is implemented in hardware as one An block

intended for an input vector in a streamed format (as seen

in Fig. 3(b).

• Horizontal reuse: As shown in Fig. 4(b), an horizontal

reuse structure is built with an input multiplexer and

feedback loop. When the block contains Dk, a diagonal

matrix that changes with the iteration, the lookup table
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must grow to accommodate all values. If a data vector

iterates ℓ times over this datapath, the diagonal table must

grow by a factor of ℓ.

IV. EXAMPLES: FROM FORMULA TO DATAPATH

We demonstrate the automated synthesis flow for two dif-

ferent DFT formulas.

Streaming reuse. The iterative FFT, given in Equation (3),

produces a streaming reuse structure. For size 8 and radix 2,

this formula1 simplifies to:

DFT′
23 = L8,2(I4 ⊗ DFT2)D8,0L8,4(I2 ⊗ L4,2)

·(I4 ⊗ DFT2)D8,1(I2 ⊗ L4,2)(I4 ⊗ DFT2).

The entire formula is then tagged as streaming with a stream

size:

DFT′
23

︸ ︷︷ ︸

stream(2)

= L8,2
︸︷︷︸

stream(2)

(I4 ⊗ DFT2)
︸ ︷︷ ︸

stream(2)

D8,0
︸︷︷︸

stream(2)

L8,4(I2 ⊗ L4,2)
︸ ︷︷ ︸

stream(2)

· (I4 ⊗ DFT2)
︸ ︷︷ ︸

stream(2)

D8,1
︸︷︷︸

stream(2)

(I2 ⊗ L4,2)
︸ ︷︷ ︸

stream(2)

(I4 ⊗ DFT2)
︸ ︷︷ ︸

stream(2)

.

Then, the rewrite system described in Section III-B changes

the formula to a hardware description formula. For this exam-

ple, the rewrite rules produce the following hardware formula:

DFT′
23

︸ ︷︷ ︸

stream(2)

= L8,2
︸︷︷︸

stream(2)

(I4 ⊗sr DFT2) D8,0
︸︷︷︸

stream(2)

L8,4(I2 ⊗ L4,2)
︸ ︷︷ ︸

stream(2)

(I4 ⊗sr DFT2)(I2 ⊗sr L4,2
︸︷︷︸

stream(2)

) D8,1
︸︷︷︸

stream(2)

(I4 ⊗sr DFT2). (5)

Each term in this equation is directly translated to a hardware

datapath according to Section III-C (from the right of the

formula to the left), producing the datapath seen in Fig. 8.

Streaming and horizontal reuse. The Pease FFT algo-

rithm [3] given in Equation (4) produces an architecture with

1We implement the DFT with the digit reversal permutation R omitted.
This is a common interface option in hardware DFT implementations. We
indicate this in the formula as DFT

′.
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both horizontal and streaming reuse. For size 16 and radix 4,

this formula simplifies to:

DFT′
42 =

1∏

k=0

L16,4 (I4 ⊗ DFT4) D16,k

Next, this formula is tagged with a stream size. Additionally,

the product can be tagged for horizontal reuse, because the

formula inside it only contains iterator k in the diagonal

matrix. The formula is then converted to a hardware formula,

as in Section III-B.

If the stream size is set to 4, the following hardware formula

is obtained:

DFT′
42

︸ ︷︷ ︸

stream(4)

=
1∏

k=0

hr
L16,4
︸ ︷︷ ︸

stream(4)

(I4 ⊗sr DFT4) D16,k
︸ ︷︷ ︸

stream(4)

(6)

Each term of this formula is translated directly to an RTL

netlist (reading the formula from right to left), and the resulting

datapath is shown in Fig. 9. However, this datapath includes

two optimizations that are performed in the compiler:

The first optimization reduces the amount of arithmetic

hardware that is built. Due to the structure of the diagonal

matrix in the Pease algorithm, one out of every r multipliers

will always access a value of 1. By labelling these values

as trivial constants and giving the system some additional

arithmetic simplification rules, the tool is able to determine

that these multipliers will always multiply by 1 and thus

remove them. This reduces the number of multipliers by 1

out of every r.

The second optimization allows the amount of lookup table

data to be reduced by a factor of logr(n). A horizontal

reuse block with a diagonal matrix Dn,k that changes with

each iteration requires n elements to be stored for each of

the logr(n) iterations, leading to a storage requirement of

n logr(n) words. However, the diagonals in the Pease formula

pose a special property: the set of all values of Dn,ℓ (the

diagonal values at iteration ℓ) is a subset of the values of

Dn,ℓ−1 for ℓ > 0. This means that with the right access

function, all n logr(n) data words can be obtained from a table

of n words. When a stream tag is applied to the Pease diagonal

matrix, our system recognizes this property. Then, it applies

the correct access function to the representation and stores

only the n data words corresponding to Dn,0. The new access

function is very simple, consisting of bit-shifts and bitwise

ANDs of indices. So, the Pease storage requirement is reduced

by a factor of logr(n).

×

×

lookup

lookup

×
lookup

4
DFT4 L16,4

4

4

Fig. 9. Example of Pease DFT16 with w = 4.

V. EVALUATION

When coupled with a formula generator like Spiral [4],

the formula synthesis flow described in this paper enables

a large number of DFT designs to be explored quickly in a

turnkey fashion. This section evaluates the supported range of

implementations and the different cost/performance tradeoffs

they provide. As we offer designs over a wide range of trade-

offs between performance and cost, our evaluations include a

comparison to the Xilinx LogiCore FFT implementation [6]

to establish that the tradeoffs have a sound basis. Specifically,

we select as reference three LogiCore FFT implementations:

the radix-4 burst I/O implementation, the radix-2 minimal size

implementation, and the pipelined streaming I/O implementa-

tion, each with a scaled fixed-point (16-bit) data format, and

natural-in bit-reverse-out data ordering.

A. Methodology

We implemented the formula-to-hardware synthesis flow as

a new hardware backend to Spiral’s formula generator, which

produced all the starting DFT formulas studied in this paper.

The hardware-specific formula rewriting rules discussed in

Section III-B are implemented as a part of Spiral’s formula

manipulation stage to produce the annotated hardware formu-

las. Finally, an RTL generator, implemented in Java, emits

synthesizable Verilog RTL descriptions from the hardware

formulas.

When an evaluation in this section reports synthesized

results, the Verilog descriptions are synthesized and place-

and-routed for the Xilinx XC2VP100-6 FPGA using Xilinx

ISE 8.1. We report implementation cost in units of slices.

All synthesized designs use 16-bit fix-point data format. To

curtail synthesis load, we consistently use 7ns as the target



clock frequency.2 Our RTL generator will use a block-RAM

for storage if the usage will utilize more than 50 percent of

that block-RAM; otherwise, distributed-RAM is used instead.3

B. Throughput Performance vs. Cost

We first evaluate the tradeoff between cost (in slices) and

throughput performance (number of transforms completed per

second). For DFT64 and DFT256, we evaluate implemen-

tations of fully-streaming Iterative FFT and horizontal-reuse

Pease FFT. For each algorithm/architecture combination, we

explore radices4 2, 4, and 8. We include implementations with

streaming width from w = r up to the maximum allowed by

the FPGA capacity. Their cost and throughput are reported in

Figure 10. Throughput (y-axis) is presented in terms of gap,

the time between starts in the steady-state. The x-axis indicates

cost in slices. The plots show separate trend lines for each

combination of algorithm, radix, and architecture. Each trend

line begins (left to right) with streaming width (w = r) and

doubles thereafter.

In the Pareto-style plot, points closer to the origin represent

designs that are smaller and faster. Only points on the Pareto

front—points that are not overshadowed by another point that

is both faster and smaller—should be used in practice. It is

important to note that the Pareto front comprises points arising

from different combinations of algorithmic and architectural

decisions.

In both DFT64 and DFT256, the fully-streaming implemen-

tations based on Iterative FFT algorithm provide the fastest

(yet commensurately more expensive) design points. For all

radix choices, the results show an increase in throughput as

more slices are consumed (by increasing streaming width w).

Implementations using larger radices generally have better per-

formance/cost ratios relative to comparable implementations

based on lower radices. This is because, for the comparable

choices of streaming width, all implementations consistently

synthesize to comparable frequencies regardless of radix.

Hence, all streaming implementations of DFT64 with the

same stream width should achieve comparable throughput.

On the other hand, for the same stream width, higher radix

implementations have the advantage of fewer permutation and

twiddle stages. However, the difference between radix 8 and

4 is much less noticeable than between radix 4 and 2.

The throughput evaluation includes horizontal-reuse im-

plementations based on the Pease FFT to provide the very

2This is methodology is acceptable because for moderate streaming width
w ≤ 8, the cycle times of our DFT implementations are determined by
critical paths in the complex arithmetic pipeline stages (consistently synthesize
to between 7 and 8 ns). For the larger and wider designs, the synthesized
frequency inherently becomes less predictable (typically 12 to 18 ns) due
to routing and placement effects. Overall, our methodology makes our
performance results conservative as our performance could possibly improve
by choosing a different frequency target. When reporting synthesis results for
the Xilinx LogiCore Library, we report the highest performing outcome from
synthesizing their designs over a range of target frequencies.

3Block-RAM are the 16-kilobit memory hard macros in the Xilinx Virtex-
II Pro FPGAs. Distributed-RAM consumes 16-bits per slice. In general, our
generator lets the user set arbitrary switch-over point between using block-
RAM vs distributed-RAM.

4The problem size n must be a power of r, the radix.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000

0

1

2

3

4

5

6

7

8

0 5000 10000 15000

not streamed

streamed

Spiral generated FFT IP Cores vs. Xilinx LogiCore

n = 64 (top), n = 256 (bottom)
Inverse throughput (gap) versus area

Gap [microseconds]

Area [slices]

Gap [microseconds]

Area [slices]

Xilinx LogiCore

Spiral radix 4

Spiral radix 2

Spiral radix 8
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cheap but commensurately lower throughput design points.

Gap is still measured in terms of time between starts of new

DFT computations, but these horizontal-reuse implementations

cannot support continuous streaming of vectors.

Data points corresponding to the LogiCore FFT implemen-

tations are included in Figure 10. They serve as reference

points to show that our designs are of good quality and yield

a real increase in performance for the extra resources they

consume.

C. Latency Performance vs. Cost

Next, we evaluate the tradeoff between cost (in slices) and

latency performance (time elapsed for one transform com-

putation). For DFT64, DFT256, and DFT1024, we evaluate

implementations of horizontal-reuse Pease FFT only. (Fully-

streaming implementations are always Pareto sub-optimal in

this regard because they are optimized for high throughput

at the expense of extended latency.) We explore radices r =
{2, 4, 8} when n = 64; radices r = {2, 4} for n = 256; and

radices r = {2, 4} for n = 1024. We include implementations

from the minimum streaming width w = r up to the maximum

allowed by the FPGA capacity. The cost and latency are



reported in Figure 11. For each design point, the y-axis

indicates latency in microseconds, and the x-axis indicates

cost in slices. Again in this Pareto-style plot, points closer

to the origin are cheaper and faster. Similar to the previous

reporting format, the plots show separate trend lines for each

combination of algorithm/radix/architecture. Each trend line

begins (left to right) with streaming width (w = r) and doubles

thereafter.

For all radix choices, the horizontal-reuse implementations

show a decrease in latency as more resources are consumed

for wider stream width w. Again, a large improvement in

performance/cost ratio is seen for radix-4 relative to radix-

2 implementations5, but the difference between radix-8 and

radix-4 is less significant. Employing higher-radix imple-

mentations has another advantage that is more subtle. For

example, to achieve the same latency, a radix-2 implementation

needs approximately twice the streaming width as in a radix-

4 implementation (to get the same amount of computation

per cycle). These performance-comparable radix-2 and radix-

4 implementations will also have comparable cost as well.

(The same relationship exists between radix-4 and radix-8.)

The subtle but important difference is that a w = 4 radix-4

implementation only requires loading and unloading 4 vector

elements per cycle at the start and finish of each computation

instead of 8 elements per cycle for a comparable performance

radix-2 implementation. For the same cost and performance,

a higher radix implementation is more desirable due to this

lower interface bandwidth.

Again, data points corresponding to the LogiCore DFT

implementations are shown in Figure 11 to provide a base-

line. Our horizontal-reuse implementations allow more direct

comparisons against LogiCore’s latency and cost optimized

architectures. Among our different latency/cost implementa-

tions, the low cost high latency implementations correspond

most closely to LogiCore’s tradeoff points.

D. Range of Implementations

Given the multi-variable and multi-objective nature of opti-

mizing FFT implementations, it is impossible to completely

explore the full range of designs or to properly compare

tradeoffs across all combinations of metrics. In Table I, we

highlight some of the most salient design corners attainable

using the design choices described in this paper. Columns 1

to 5 specify the corresponding decisions used (problem size

n, algorithm, radix r, architecture, stream width w). Columns

6 to 9 report the performance and cost metrics (throughput,

latency, slices used, block-RAM used).

VI. RELATED WORK

An extensive base of fundamental work in FFT algorithms

and architectures for VLSI and FPGA has laid the foundation

for this work. The mathematical framework described in this

5The results given for the radix-2 cases agree with our earlier work [2]
which dealt specially with radix-2 horizontal-reuse Pease FFT implemen-
tations. Improvements seen in the current results are due to the recently
incorporated memory-based permutation blocks.

paper is capable of representing a wide variety of designs,

incorporating optimizations at both the algorithmic and archi-

tectural levels.

Examples of prior work in fully-streamed (or pipelined) FFT

implementations can be seen in [7], [8], and [9]. In some

previous pipelined implementations, arithmetic units are not

fully utilizable (e.g., [7] and [9]) due to their permutation im-

plementations. Examples of prior work examining horizontal-

reuse FFT implementations can be seen in [10] and [11].

Specifically, Pease FFTs with horizontal reuse are discussed

in [2] and [12]. On the whole, many prior developments

have covered much of the same design space we considered

in this paper. However, these implementations were tuned

for different objectives and targeted different technologies,

preventing a systematic representation of the design space. Our

study is somewhat unique in its extensive coverage of varied

implementation parameters, using real RTL designs and real

FPGA synthesis.

Below, we highlight examples of some important design

choices not examined in this study. We did not consider

the impact of fixed-point precision [13] or floating-point

arithmetics [14]. We considered neither on-the-fly twiddle

generation using CORDIC [15] nor distributed arithmetic to

optimize the arithmetic pipeline at the bit-level [16]. We

concentrated on performance and cost as the primary metrics

and did not consider the issues of power or energy [17]. We

also did not consider FFT processors designed specifically for

executing FFT algorithms [18].

VII. CONCLUSION

This paper presents a DFT transform synthesis flow that

captures an important range of implementation options. The

synthesis flow starts from precise mathematical formulas of

fast DFT algorithms and applies structural rewrite rules to

impart appropriate hardware implementation decisions. The

resulting annotated hardware formulas straightforwardly map

to RTL netlists of efficient implementations. This synthesis

flow can be coupled with the exiting Spiral formula generator

to fully automate DFT design exploration and synthesis.

The formula language and the synthesis procedure presented

in this paper are actually sufficient for a wider range of

transforms in addition to DFT. The system, as is, can handle

Walsh-Hadamard transform and multidimensional DFTs. The

central limitation to supporting a broader class of transforms

is in constructing cost-effective streaming implementations of

the required permutations. Recent work [5] has produced very

efficient solutions to this problem. Thus, we plan to continue

this work on other transforms (e.g., discrete cosine transform

or the DFT on real valued inputs).
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Fig. 11. Latency versus cost for horizontal-reuse implementations of DFT64, DFT256, and DFT1024 (from left to right).

n algorithm r architecture w throughput latency cost BRAMs comments

(1/µs) (µs) (slices)

64 Pease (4) 2 horiz. reuse 2 0.75 1.34 423 4 lowest cost

64 Iterative (3) 2 fully-streamed 32 42.50 0.21 19480 0 best throughput

64 Pease (4) 4 horiz. reuse 32 4.42 0.23 6052 0 lowest latency per slice

256 Pease (4) 2 horiz. reuse 2 0.13 7.44 582 2 lowest cost

256 Iterative (3) 16 fully-streamed 32 15.22 0.25 22105 64 best throughput

256 Pease (4) 4 horiz. reuse 16 0.92 1.09 2013 8 balanced cost vs latency

1024 Pease (4) 2 horiz. reuse 2 0.03 36.7 402 6 lowest cost

1024 Pease (4) 32 horiz. reuse 32 1.17 0.85 21377 124 lowest latency

1024 Pease (4) 4 horiz. reuse 32 0.37 2.72 3706 56 balanced cost vs latency

TABLE I

COMPILATION OF SELECT REPRESENTATIVE IMPLEMENTATIONS AND DESIGN CORNERS.
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