
Formal Datapath Representation and Manipulation
for Implementing DSP Transforms

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

{pam,franzf,jhoe,pueschel}@ece.cmu.edu

ABSTRACT

We present a domain-specific approach to representing dat-
apaths for hardware implementations of linear signal trans-
form algorithms. We extend the tensor structure for de-
scribing linear transform algorithms, adding the ability to
explicitly characterize two important dimensions of datap-
ath architecture. This representation allows both algorithm
and datapath to be specified within a single formula and
gives the designer the ability to easily consider a wide space
of possible datapaths at a high level of abstraction.

We have constructed a formula manipulation system based
on this representation and have written a compiler that can
translate a formula into a hardware implementation. This
enables an automatic “push button” compilation flow that
produces a register transfer level hardware description from
high-level datapath directives and an algorithm (written as a
formula). In our experimental results, we demonstrate that
this approach yields efficient designs over a large tradeoff
space.
Categories and Subject Descriptors: B.6.3 [Hardware]:
Design Aids—Automatic synthesis
General Terms: Algorithms, Design
Keywords: linear transform, discrete Fourier transform,
high-level synthesis, streaming

1. INTRODUCTION
Linear signal transforms such as the discrete Fourier trans-

form are ubiquitous in digital signal processing (DSP) and
scientific computing. Algorithms for computing these trans-
forms are often highly structured and regular, which makes
them well suited for hardware implementation. This regu-
larity allows a wide space of potential datapath structures,
each giving a different set of tradeoffs between performance
and cost. It is very difficult for a designer to determine the
structure that will yield the most efficient datapath for given
cost or performance constraints.

Contribution. In this paper, we take a domain-specific
mathematical representation for describing linear DSP al-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

gorithms and extend it to include datapath concepts such
as parallelism and explicit datapath reuse. The result is a
mathematical language that we compile directly into hard-
ware. Using this language, a designer specifies datapath
options at the formula level. This leads to easier explo-
ration of the design space by enabling algorithm restruc-
turing through formula manipulation, which is performed
automatically based on high-level directives.

We have constructed a “push button” synthesis system
that takes as input an algorithm (written as a formula) and
high-level datapath directives (indicating desired qualities of
the resulting design); it outputs a design in register-transfer
level (RTL) Verilog.

Organization. We begin by introducing the tensor (or
Kronecker) representation for transform algorithms in Sec-
tion 2. Then, Section 3 discusses the datapath constructs
we consider, how we are able to include them within the ex-
isting mathematical representation, and the associated per-
formance and cost metrics. Additionally, we give a high-
level view of our synthesis system. In Section 4, we evaluate
our generated designs. We present experiments that demon-
strate: (a) that the cost/performance tradeoffs obtained are
competitive with good hand-designed implementations, (b)
that this system produces designs across a wide tradeoff
space, and (c) that real benefits are obtained by considering
a variety of datapath structures. Lastly, we discuss related
work in Section 5 and conclude in Section 6.

2. BACKGROUND

Transforms as matrices. A linear transform may be
viewed as a dense matrix; applying the transform is then
a matrix-vector multiplication. For example, an n point
transform characterized by matrix A is given by

y = An · x,

where x and y are the n point input and output vectors
(respectively), and An is an n × n matrix. Direct evalua-
tion of the matrix-vector product requires O

`

n2
´

arithmetic
operations.

Algorithms as formulas. Fast algorithms exist for many
transforms that reduce the arithmetic cost to O

`

n log n
´

. We
view an algorithm as a decomposition of the dense matrix
An into a product of structured sparse matrices. The tensor
(or Kronecker) formulation has been shown to be a compact
and efficient way to represent fast transform algorithms [5,
11]. Recently, others have shown that a framework based on
this formulation can be used to generate optimized software

Bn Anx y

(a) An · Bn

A2

A2

x0

x3

x2

x1

y0

y3

y2

y1

(b) I2 ⊗ A2

x0

x3

x2

x1

d0

d1

d2

d3

y0

y3

y2

y1

(c) D4

DFT2

x0

x3

x2

x1

i

y0

y3

y2

y1

DFT2

DFT2

DFT2

(d) DFT4 = P4 · (I2 ⊗ DFT2) · P4 · D4 · (I2 ⊗ DFT2) · P4

Figure 1: Examples of translating from formula to
combinational datapath.

for today’s high-performance computer systems [10].

Formula language. This algorithmic representation is cap-
tured in a formal language that represents algorithms using
formulas, with each term in the formula having a corre-
sponding combinational datapath representation. In Backus-
Naur form, the language is defined as follows (non-terminals
are bold-faced):

matrixn ::=matrixn · · ·matrixn

|
Q

i matrixn

| Ik ⊗ matrixm where n = km
| basen

basen ::=Dn = diag(d0, . . . , dn−1) | Pn | In | An

A matrix formula can be decomposed into a product or it-
erative product of matrix formulas (lines 1 and 2, illustrated
in Figure 1(a)). Matrix Ik is the k × k identity matrix, and
Ik ⊗ matrixm is a tensor (or Kronecker) product, where k
parallel instances of matrixm are applied to the data vector
of size n = km (Figure 1(b)).

We use Pn to denote a permutation on n points and Dn

to represent a diagonal matrix, which has non-zero values
along the main diagonal only, causing each value of the in-
put vector to be scaled by a constant (Figure 1(c)). Lastly,
we use An to denote a generic dense n × n matrix, which
corresponds to a computational basic block.

This language is a subset of the signal processing language
(SPL) used in Spiral, a program generator for software im-
plementations of linear transforms [10]. An algorithm writ-
ten in this language can be mapped directly to a combina-
tional datapath (Figure 1(d)), but the resulting datapath is
infeasibly large for all but the smallest problem sizes.

3. DATAPATH REPRESENTATION
The tensor language described above can represent a wide

range of algorithms, but it does not have the capability
of representing sequential reuse of datapath components,
where one computational block is used many times while
solving a single problem. Sequential reuse is necessary for
efficient and reasonably sized hardware designs.

In this section, we describe extensions to our formula lan-
guage to represent two types of sequential reuse that are
relevant for hardware designs. We show how these exten-
sions enable explicit datapath description at the formula
level and discuss how formulas are automatically translated
into register-transfer level datapath descriptions.

n

size

(m × n)

vector ..
.

An

n An

n An

..
.

(a) No streaming reuse: Im ⊗ An.

n words

per cycle An

…

m cycles

one streamed vector,

size (m × n)

(b) Full streaming reuse: Im ⊗sr An.

n An

…

mn/w cycles

n An

…

..
.

(w
/n

) b
lo

ck
s

w words

per cycle

(c) Partial streaming reuse: Imn/w ⊗sr
`

Iw/n ⊗ An

´

.

Figure 2: Examples of streaming reuse.

3.1 Streaming Reuse
As we saw in Section 2, the tensor product Im ⊗ An in-

dicates m data-parallel instantiations of the block An (Fig-
ure 2(a)). However, the same computation can be performed
by other structures. For example, the tensor product can
be interpreted as reuse in time (rather than parallelism in
space). Then, we build a single instance of block An and
reuse it over m consecutive cycles (Figure 2(b)). Rather
than all mn input points entering the system concurrently,
they now stream in and out at a rate of n words per cycle.
We call this streaming reuse and represent it Im ⊗sr An. We
define streaming width as the number of inputs (or outputs)
that enter (or exit) a section of datapath during each cycle.
Here, the streaming width is n.

We can nest the two interpretations of ⊗ in order to build
a partially parallel datapath that is reused over multiple
cycles (Figure 2(c)). In general, Im ⊗ An can be written as
Imn/w ⊗sr (Iw/n ⊗ An), which results in a datapath with a
streaming width of w, consisting of w/n parallel instances of
An, reused over mn/w cycles (w is a multiple of n; w ≤ mn).
Increasing the streaming width increases the datapath’s cost
and throughput proportionally.

3.2 Iterative Reuse
The product of m identical blocks An can be written as

Q

m An. A straightforward interpretation of this is a series
of m blocks (Figure 3(a)).

We can also perform the same computation by reusing
the An block m times (Figure 3(b)). Now, the datapath
must have a feedback mechanism to allow the data to cycle
through the proper number of times. We call this iterative
reuse and represent it by adding the letters “ir” to the prod-
uct term:

Qir
m An. By nesting both kinds of product terms,

we specify a number of blocks in sequence to be reused a
number of times (Figure 3(c)). In general,

Q

m An can be

restructured into
Qir

m/d(
Q

d An), resulting in d cascaded in-

stances of An, iterated over m/d times (m/d is an integer).
We define depth as the number of stages built (here, d).

An An

…

m blocks

(a) No iterative reuse:
Q

m An.

An

1 block, reused

m times

(b) Full iterative reuse:
Qir

m An.

An An

…

d blocks, reused

m/d times

(c) Partial iterative reuse:
Qir

m/d

`
Q

d An

´

.

Figure 3: Examples of iterative reuse.

When an iterative reuse datapath is built, it is important
that the reused portion of the datapath buffer the entire
vector, so the “head” of the data maintains sufficient dis-
tance from its own “tail.” This is equivalent to requiring
that the latency (in cycles) be at least 1/(its throughput
in transforms per cycle). If the datapath does not naturally
have this property, it is necessary to add buffers to increase
its latency. We will see an example of this in the following
section.

3.3 Combining Streaming and Iterative Reuse

Often, transform algorithms contain the form
Q

k(Im ⊗
An). This structure can utilize both iterative reuse (due
to the

Q

) and streaming reuse (due to Im ⊗ An), allow-
ing a wide range of hybrid implementations that exhibit
flexibility across two dimensions. We can restructure this
formula to have streaming and iterative reuse of parameter-
ized amounts:

Qir
k/d

`
Q

d(Inm/w ⊗sr (Iw/n ⊗ An))
´

, where d

is the depth of the cascaded stages (ranging from 1 to k; k/d
must be an integer). Parameter w is the streaming width, a
multiple of n.

This parameterized datapath is illustrated in Figure 4.
Each stage consists of w/n parallel instances of An; d stages
are built in series. Let Bmn represent this array of dw/n
many An blocks. Data are loaded into Bmn at a rate of w
per cycle over mn/w cycles. The vector feeds back through
Bmn a total of k/d times.

Latency and throughput. Given this combined reuse ex-
ample, we can analyze the effect of parameters d and w on
the datapath. In Table 1, we first describe several general
rules for deriving the latency, throughput, and an approxi-
mate area cost of basic formula constructs.

Below, we present calculations that correspond to evalu-
ating the general rules from Table 1 for the specific param-
eters of this combined reuse example (Figure 4). In these
calculations, we assume that Bmn (the collective block of
An blocks) is fully pipelined, i.e., its throughput is dictated
by the problem size and streaming width only: T (Bmn) =
w/mn. The analysis of latency and throughput for this com-
bined reuse example includes the following two cases:

An

An

..
.

An

An

..
.

…

…

n …

mn/w cycles

n …

w words

per cycle

d stages,

reused k/d times

(w/n) blocks

per column

Figure 4: Combining iterative and streaming reuse:
Q

ir

k/d

`
Q

d(Inm/w ⊗
sr (Iw/n ⊗ An))

´

.

• Case 1: Iterative reuse. This case occurs when
d < k, meaning the data will iterate over the inter-
nal block at least 2 times. As discussed in Section 3.2,
the internal block’s minimum latency is determined by
its throughput. So, if d · L(An) < mn/w, buffers are
added until they are equal. Thus, internal block Bmn

has latency L(Bmn) = max(mn/w, d ·L(An)). The la-
tency of the whole system is k/d times this, giving
latency = max(mnk/dw, k · L(An)). Because we are
utilizing iterative reuse, a new vector cannot enter un-
til the previous vector begins exiting the datapath, so
the throughput (in transforms per cycle) is the inverse
of the latency, min(dw/mnk, 1/(k · L(An))).

• Case 2: No iterative reuse. This case occurs when
d = k. Now, no iterative reuse is performed; the data
only passes through the inner block once. The datap-
ath consists of d = k stages, giving latency = k ·L(An).
Because the data never feeds back, the throughput is
limited only by the streaming width, giving through-
put = w/mn transforms per cycle.

From these equations, we see that increasing w and d
will lead to lower latency and higher throughput in equal
weights, until either the data flows so quickly that the la-
tency of the computation dominates (d · L(An) > mn/w),
or d increases until no iterative reuse is performed (d = k).

Flexibility. Additionally, there is one important distinction
that must be made between parameters d and w: as w grows,
the datapath requires greater bandwidth at its ports, and
the cost of interconnect and multiplexers increases. For this
reason, it is preferable to increase d instead of w. However,
we also note that d must divide k evenly (k is typically the
log2 of the transform size). In many cases, this becomes an
“all or nothing” situation, where the only options are d = 1
and d = k. In those cases, the added flexibility provided by
w is important.

Lastly, we note that when the datapath does not employ
iterative reuse (i.e., when d = k), the designer typically has
a wider choice of algorithms because the internal stages are
not required to be uniform.

Datapath efficiency and vector interleaving. Assume
we have an iterative reuse datapath that reuses block Bn.
Here, Bn can represent any datapath we consider in this pa-
per, including those with further iterative reuse internally.
Bn has an inherent latency L(Bn) and throughput T (Bn)
(determined by the inverse of the minimum initiation inter-
val of input vectors).

With a single vector recirculating through Bn, the effec-
tive throughput of Bn may be further limited to 1/L(Bn) if
L(Bn) is greater than the minimum initiation interval. In
this case the head of the vector is still inside Bn when Bn’s
input is ready to accept a new iteration.

Formula F Latency L(F) Throughput T (F) Area cost C(F)

Fn = A
(0)
n · A

(1)
n · · ·A

(m−1)
n

P

i(L(A
(i)
n)) min(T (A

(i)
n))

P

i(C(A
(i)
n))

Fn =
Qir

k An max(k
T (An)

, k · L(An)) min(T (An)
k

, 1
k·L(An)

) C(An) + C(mux)

Fmn = Im ⊗ An L(An) T (An) m · C(An)

Fmn = Im ⊗sr An L(An) T (An)/m C(An)

Table 1: Given a matrix formula F , formulas for latency L(F) (in cycles), throughput T (F) (in transforms
per cycle) and approximate area cost C(F) (relative to the area cost of sub-modules).

We can define a utilization ratio R of the effective through-
put to the inherent throughput of Bn; this quantifies the
portion of Bn’s potential throughput that is utilized in the
system. For a single vector, R = (1/L(Bn))/T (Bn).

When the utilization by a single vector is sufficiently low,
we can interleave multiple vectors to make use of the full
throughput capacity of Bn. Formally, if R ≤ 1/V (where V
is an integer), we may interleave V computations through
the datapath, increasing the effective throughput and thus
increasing the utilization ratio to R′ = (V/L(Bn))/T (Bn).

In some cases, a designer may want to increase L(Bn) ar-
tificially for better efficiency. For example, if R = 0.55, the
designer could insert delay buffers in the datapath (increase
L(Bn)) until R is reduced to 0.5 and then interleave two
vectors. This increased utilization yields higher throughput
at the expense of added latency, so the designer’s particu-
lar application requirements will determine the suitability of
this approach. Our compilation framework, discussed next,
can utilize either strategy.

3.4 Compilation: From Math to RTL
We have built a compilation framework that takes an al-

gorithm written as a formula, automatically manipulates it
to describe a datapath, and translates the resulting design
into register-transfer level (RTL) Verilog. A full explanation
of this compilation framework is outside of the scope of this
paper, but we present a high-level description here.

First, the algorithm is expanded into a formula in the lan-
guage defined in Section 2. This formula corresponds to the
computation that will be performed but does not specify
the structure of the design that will perform it. Next, dat-
apath directives are added that give desired characteristics
of the final implementation (e.g., streaming width). A for-
mula rewriting system then propagates these directives into
the formula and restructures each term to match the de-
sired characteristics. A hardware formula is produced that
explicitly specifies the datapath architecture.

Lastly, the hardware formula is translated to an RTL
netlist that has the desired reuse characteristics. Compu-
tational blocks are implemented according to the base ma-
trices and streaming permutations are built with memory
and interconnection networks.

4. EVALUATION
In this section, we evaluate designs produced using the

proposed method. First, we explain our methodology. Then,
we give several examples of transform algorithms that utilize
I⊗ and

Q

and demonstrate that streaming and iterative
reuse lead to a wide tradeoff space in the resulting designs.

We compare our generated designs with existing bench-
marks in order to demonstrate the quality of our cores. We
also evaluate a transform with a wider tradeoff space and

examine how high-level design decisions affect the resulting
design. Lastly, we discuss the generality of this approach
and show other transform algorithms that utilize I⊗ and
Q

, i.e., algorithms that can be implemented with streaming
and iterative reuse.

4.1 Methodology
We have implemented the compilation framework that is

described in Section 3.4 as a new backend to the Spiral for-
mula generation framework [10]. Spiral is used to gener-
ate the starting formula for a given transform, and we have
modified the tool to perform the formula manipulation asso-
ciated with our extensions to the tensor formula language.
Lastly, we have written a standalone compiler that trans-
lates a hardware formula into a register-transfer level (RTL)
description. The tools are integrated, resulting in a com-
pletely automated flow from problem description to RTL
Verilog.

In this section, we evaluate various designs produced with
our framework. Here, we target the Xilinx Virtex-5 LX 330
FPGA and generate designs that use a 16 bit fixed point
data type.1 We use Xilinx ISE 9.1i to synthesize and place
and route the designs. When memory is required, we use
an on-chip block RAM (BRAM) if we can utilize 50% of its
storage capacity. Otherwise, we use distributed RAM, i.e.,
memory distributed across the FPGA’s logic cells. Although
an FPGA platform provides a convenient target for evalua-
tion, the designs we generate are not limited to FPGAs.

4.2 Quality of Generated Designs
In this section, we demonstrate that the designs produced

by our framework are competitive with cores that are com-
mercially available or found in recent literature. We choose
the discrete Fourier transform (DFT) of size 1024; we evalu-
ate our designs relative to cores from the commercially avail-
able Xilinx LogiCore FFT version 4.1 and the designs from
our previous work [8]. The algorithm and architectures we
considered in [8] are subsets of the space we consider here.

We generate cores based upon two algorithms: the Pease
FFT [9] and an iterative version of the Cooley-Tukey FFT [3].
Although they are different algorithms, at the high level,
both are of the form:

DFTn =

0

@

log
r
(n)−1
Y

i=0

Pn(In/r ⊗ DFTr)Dn

1

APn,

where r is a power of two. (See Section 2 for an explanation
of the terms in this formula.) We generate a variety of de-
signs using these algorithms with various depths, streaming

1Data type and bit width are parameters of our generation
framework. Currently, our tool supports fixed point data
types of any bitwidth and single precision floating point.

0

500

1,000

1,500

2,000

2,500

3,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Generated, with iterative reuse

Generated, without iterative reuse

Nordin, DAC05

Xilinx LogiCore FFT v4.1

area [slices]

DFT 1024 (16 bit fixed point) on Xilinx Virtex-5 FPGA
throughput [million samples per second]

Figure 5: Throughput for varying implementations
of DFT1024.

widths, and radices (values of r in the formula above).
Here we consider steady state throughput (given in million

samples per second) as our performance metric and area (in
terms of FPGA slices) as our cost metric. Figure 5 shows
throughput for varying implementations of DFT1024. From
our data we plot only the Pareto optimal points, i.e., those
that are not eclipsed by another design that is both smaller
and faster.

From these results, we see that the cost and performance
values of the LogiCore designs are similar to those of our
smallest cores. Furthermore, we see that our larger cores
provide a commensurate increase in performance for the ex-
tra resources they consume.

Our previous work [8] covers a small subset of the dat-
apath and algorithmic options we consider in this paper.
In Figure 5, we see that the added flexibility of our cur-
rent method leads to significant improvements over [8]; the
designs in our Pareto optimal set all provide higher perfor-
mance at lower cost.

Similar trends are obtained if we choose a different value
for n and/or measure latency instead of throughput.

4.3 Automatic Design Space Exploration
In this section, we consider an algorithm for the two-

dimensional discrete Fourier transform (2D DFT). This al-
gorithm utilizes I⊗ and two

Q

terms, giving a very wide
space of possible datapaths. This algorithm operates on n2

points and has the following form:

DFTn×n =

1
Y

k=0

t−1
Y

ℓ=0

Pn2(In2/r ⊗ DFTr)Dn2

!

Pn2

!

,

where t = logr(n). This gives two iterative product terms, as
seen above. Each may utilize iterative reuse, which we char-
acterize with depth parameters d1 and d2 (see Section 3.2).
This is illustrated in Figure 6.

We define d2 to be the depth of the inner product; d2 can
be between 1 and t, provided that t/d2 is an integer. Each
internal block (a shaded region in Figure 6) consists of d2

stages of P · (I ⊗ DFTr) · D, streamed with w ports.
We define d1 to be the depth of the outer product; d1

can be either 1 or 2. When d1 = 1, the outer product
term is iteratively reused (Figure 6(a)). When d1 = 2, the
outer term is unrolled, giving two cascaded stages as seen in
Figure 6(b).

Exploration. Now, we present results of a datapath ex-
ploration for 2D DFT64×64. We generate cores across all

…

Perm

P •

(I ⊗ DFTr)

• D

w

w

d2 stages

P •

(I ⊗ DFTr)

• D

(a) d1 = 1. The outer product term is iteratively
reused.

d2 stages

d2 stages

…

w
Perm

…

Perm w

P •

(I ⊗ DFTr)

• D

P •

(I ⊗ DFTr)

• D

P •

(I ⊗ DFTr)

• D

P •

(I ⊗ DFTr)

• D

(b) d1 = 2. The outer product term is fully unrolled, i.e.,
not iteratively reused.

Figure 6: Illustrations of DFTn×n with outer prod-
uct term parameterized by d1, inner product term
parameterized by d2, and streaming width w.

possible values of d1 and d2 with the streaming width w
ranging between r and 16. Parameter r, the radix, is 2, 4, or
8. Summing these possibilities for d1, d2, w, and r, we have
a total of 52 different architectures in this design space.

We generate each hardware core, synthesize it, and place
and route it. In Figure 7, we show the throughput (in million
samples per second) versus area (in FPGA slices) for all 52
data points, with different markers for each value of w. The
black line passes through the Pareto optimal points.

In this data set, the smallest Pareto optimal point is the
maximally folded design: w = 2, d1 = 1, d2 = 1. From there,
we continue along the Pareto optimal set by first increasing
the d parameters while keeping w = 2 (white diamonds in
Figure 7). Increasing w yields designs in the Pareto optimal
set only after several values of d1 and d2 have been included.

This observation—that it is preferable to first increase d1

and d2 before increasing w—is supported by our theoretical
understanding of streaming and iterative reuse as outlined
in Section 3.3. However, it is not obvious which param-
eter combinations will yield designs in the Pareto optimal
set, and it is difficult to determine the “crossover” points
where one design parameter becomes more important than
another. This highlights the importance of an automatic
generation system; it would be exceedingly difficult to com-
plete such a design exploration by hand.

4.4 Generality
The datapath concepts considered in this paper (stream-

ing reuse of Im ⊗ An and iterative reuse of
Q

k An) apply
to algorithms for transforms other than those already dis-
cussed. In this section, we present several problems that fit
within these structures.

For example, the Walsh-Hadamard transform (WHT) can
be computed with an algorithm of the form

WHTrt =

t−1
Y

k=0

((Irt−1 ⊗ WHTr)Prt) ,

and the real discrete Fourier transform (RDFT) can be com-

0

200

400

600

800

1,000

1,200

1,400

1,600

0 5,000 10,000 15,000 20,000

Streaming width 2

Streaming width 4

Streaming width 8

Streaming width 16

area [slices]

DFT 2D 64x64 (16 bit fixed point) on Xilinx Virtex-5 FPGA
throughput [million samples per second]

Figure 7: Throughput versus area for 2D DFT64×64.
The streaming width w is indicated by the data
marker.

puted using an algorithm of the form

RDFT4m = P4m

0

@

log2(m)
Y

k=0

(Im ⊗ℓ RDFT4(ℓ, k))P4m

1

AP4m.

The WHT algorithm is completely expressible in the lan-
guage we consider, and the RDFT requires only a small
addition. Both algorithms contain iterative product

Q

and
tensor product I⊗A, which means that iterative and stream-
ing reuse can be applied to each. We have implemented both
of these algorithms in our framework and have generated and
evaluated datapaths for both.

Other fast linear transform algorithms can be written us-
ing

Q

and I⊗A, meaning that streaming and iterative reuse
naturally apply. For example, [1] shows algorithms of this
sort for discrete sine and cosine transforms (DST and DCT).

Lastly, we point out that streaming and iterative reuse
can apply to other numerical problems outside of the do-
main of linear transforms. For example, Viterbi decoding
is performed using a dataflow quite similar to the discrete
Fourier transform, and many matrix-matrix multiplication
algorithms exhibit parallelism which can be expressed by the
tensor product. By extending our framework beyond linear
transforms, we may be able to efficiently describe datapaths
for these types of problems.

5. RELATED WORK
Although we do not know of any other instances of the

tensor formula language being extended to support a gen-
eral class of hardware implementations in this manner, it has
been used in the process of designing special purpose hard-
ware (e.g., an FFT processor in [7] and FFT cores in our
previous work [8]). The important distinctions are that nei-
ther approach extends the formula language to describe dat-
apath structure and that neither compiles from the formula
to hardware; the formula is used to describe the algorithm
only.

Many methods have been proposed to compile hardware
from a software-like level of abstraction. This work differs
from ours in the level of representation (typically C or Mat-
lab code) and in scope.

Lastly, many special purpose FFT implementations have
been proposed in the literature that have features that cor-
respond to the datapath structures we are interested in. To
name just a few, [6] is an example of a design with stream-

ing reuse, and cores with streaming and iterative reuse are
developed in [2, 4, 8].

6. CONCLUSIONS
Linear DSP transforms and their algorithms are well un-

derstood and can be formally described in a compact man-
ner with the tensor product formulation. In this work, we
extended this framework to allow the representation of the
datapath concepts of streaming and iterative reuse. This
enables a domain-specific, formula-level view of hardware
design and allows datapath manipulation to take place auto-
matically at the mathematical level. We have implemented
these ideas in an automatic design flow that manipulates
a formula based upon high-level directives and produces a
design in RTL Verilog. Lastly, we have presented results
that demonstrate the breadth of these techniques and have
established the quality of the generated designs.

7. ACKNOWLEDGMENTS
This work was supported by NSF through awards 0325687

and 0702386 and by DARPA through Department of Interior
grant NBCH1050009 and ARO grant W911NF0710416.

8. REFERENCES
[1] J. Astola and D. Akopian. Architecture-oriented

regular algorithms for discrete sine and cosine
transforms. IEEE Transactions on Signal Processing,
47(4):1109–1124, 1999.

[2] D. Cohen. Simplified control of FFT hardware. IEEE
Transactions on Acoustics, Speech, and Signal
Processing, 24(6):577–579, 1976.

[3] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of compex Fourier series.
Mathematics of Computation, 19(90), 1965.

[4] N. Dave, M. Pellauer, S. Gerding, and Arvind. 802.11a
transmitter: a case study in microarchitectural
exploration. In MEMOCODE, 2006.

[5] J. Granata, M. Conner, and R. Tolimieri. The tensor
product: a mathematical programming language for
FFTs and other fast DSP operations. Signal
Processing Magazine, IEEE, 9(1):40–48, 1992.

[6] S. He and M. Torkelson. A new approach to pipeline
FFT processor. In Proc. International Parallel
Processing Symposium, 1996.

[7] P. Kumhom, J. Johnson, and P. Nagvajara. Design,
optimization, and implementation of a universal FFT
processor. In Proc. 13th IEEE ASIC/SOC Conference,
2000.

[8] G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel.
Automatic generation of customized discrete Fourier
transform IPs. In Design Automation Conference
(DAC), pages 471–474, 2005.

[9] M. C. Pease. An adaptation of the fast Fourier
transform for parallel processing. Journal of the ACM,
15(2), April 1968.

[10] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. W. Singer, J. Xiong, F. Franchetti,
A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proc. of the IEEE, 93(2):232–275, 2005.

[11] C. Van Loan. Computational Frameworks for the Fast
Fourier Transform. SIAM, 1992.

