
Flick: Fast and Lightweight ISA-Crossing Call
for Heterogeneous-ISA Environments
Shenghsun Cho, Han Chen, Sergey Madaminov, Michael Ferdman, Peter Milder

Stony Brook University
{shencho, smadaminov, mferdman}@cs.stonybrook.edu, {han.chen.2, peter.milder}@stonybrook.edu

Abstract—Heterogeneous-ISA multi-core systems have perfor-
mance and power consumption benefits. Today, numerous system
components, such as NVRAMs and Smart NICs, already have
built-in processor cores with ISAs different from that of the
host CPUs, making many modern systems heterogeneous-ISA
multi-core systems. Unfortunately, programming and using such
systems efficiently is difficult and requires extensive support from
the host operating systems. Existing programming solutions are
complex, require dramatic changes to the systems, and often
incur significant performance overheads.

To address this challenge, we propose Flick: Fast and
Lightweight ISA-Crossing Call, for migrating threads in
heterogeneous-ISA multi-core systems. By leveraging hardware
virtual memory support and standard operating system mech-
anisms, a software thread can transparently migrate between
cores with different ISAs. We prototype a heterogeneous-ISA
multi-core system using FPGAs with off-the-shelf hardware and
software to evaluate Flick. Experiments with microbenchmarks
and a BFS application show that Flick requires only minor
changes to the existing OS and software, and incurs only 18µs
round trip overhead for migrating a thread through PCIe, which
is at least 23x faster than prior work.

Index Terms—Heterogeneous-ISA, Multi-Core, Thread Migra-
tion, Virtual Memory, FPGA

I. INTRODUCTION

Multi-core processors, including CMPs and MPSoCs, have
dominated CPU architectures for over a decade. To keep
improving processor performance within constrained energy
budgets, researchers and industry have proposed and de-
ployed heterogeneous multi-core processors, including single-
ISA heterogeneous multi-cores [1], [2] and heterogeneous-ISA
multi-cores [3], [4]. Such processors are deployed in systems
ranging from massive warehouse-scale datacenter servers to
smartphones and small embedded systems. Among the hetero-
geneous multi-core processors, heterogeneous-ISA multi-core
CMPs and MPSoCs require the highest effort to effectively
utilize the diversity of both the architecture (ISAs) and the
microarchitecture for performance and power efficiency.

In addition to the intentionally heterogeneous-ISA CMPs
and MPSoCs, many modern system components, such as
Smart NICs [5], NVMes [6], and FPGAs [7], [8], include
built-in general-purpose processors. These NxPs (Near-x-
Processors), such as near-to-communication (Smart NICs),
near-to-data (NVMes), or near-to-accelerator (FPGAs), typi-
cally use ISAs different from the host processors, with their
microarchitectures tailored to run the target workloads effi-
ciently. As a result of incorporating NxPs, numerous modern

computing systems are already heterogeneous-ISA systems.
This fact presents a new opportunity to spread computation
and communication across cores with different ISAs, achieving
better performance and power efficiency.

However, although the benefits of heterogeneous-ISA multi-
core systems are attractive, these benefits come with significant
challenges for the software developers of such systems. These
challenges are particularly pronounced for NxPs, which have
their own private memory, calling for software developers
to use the NxPs in an “offload engine” programming style,
similar to CUDA or OpenCL for GPUs. The offload-engine
software organization differs greatly from the conventional
general-purpose multi-core programming environment familiar
to many developers. In such NxPs, developers typically handle
not only the communication between the host processors
and the NxPs but also the data addressing and movement,
further increasing the complexity (and potentially reducing the
performance) of the resulting systems.

To address the programmability challenges, researchers
have proposed new operating systems [9], [10] and modi-
fications to existing operating systems [11], aiming to hide
the complexity of heterogeneous-ISA multi-core systems and
provide a traditional multi-core environment familiar to de-
velopers. These approaches typically assume that software
threads must be permitted to freely migrate between cores
at any execution point, enabling thread migration based on,
for example, dynamically profiled system load. To support
such thread migration capabilities, prior work employs many
complex techniques, including run-time binary translation and
thread state transformation [11], integrating these mechanisms
into heavily modified or even brand new operating systems.
Unfortunately, although they generally achieve their goal of
simple programmability and convenience, these approaches
impose major performance overheads on the execution of the
heterogeneous-ISA software.

In this work, we observe that conveniently-programmable
heterogeneous-ISA systems are possible, and high perfor-
mance is achievable, by sacrificing a small amount of purity
associated with the migrate-any-time systems. Particularly for
NxP systems, where the software developers have a clear idea
about the partitioning of the software and the data, many
of the techniques from the prior work introduce unnecessary
complexity and overhead. The system should provide the
illusion of a simple and efficient shared memory multi-core
environment to users, enabling them to easily develop software

that uses cores with different ISAs. We, therefore, take a
principled approach to identify the minimum requirements
for a heterogeneous-ISA multi-core programming environment
that is easy to use, requires minimal deviation from traditional
single-ISA multi-core programming, and can be achieved
without introducing major modifications to the existing op-
erating systems and hardware.

We develop Flick: Fast and Lightweight ISA-Crossing Call
for migrating threads in heterogeneous-ISA environments.
To maintain expectations of conventional multi-core systems,
Flick guarantees a unified physical memory address space, and
the same software thread observes the same virtual memory
address space on all cores, regardless of ISA. Given hardware
that can support such a memory organization, we create a con-
venient and lightweight generic thread migration mechanism
capable of transferring threads between cores with different-
ISAs at function-call boundaries. Flick uses mechanisms that
are readily available in modern systems, such as access-control
bits in page table entries, and makes non-intrusive use of
existing software techniques such as page fault handling and
dynamic library loaders. Ultimately, Flick allows software
developers to take conventional software that targets multi-
core systems and indicate which functions should run on which
ISA, thereby directing the system to transparently migrate the
running thread to the desired core when the program makes
function calls across the designated ISA boundaries.

We prototype and evaluate Flick on a heterogeneous-ISA
multi-core platform using a modern off-the-shelf server with
a PCIe connected FPGA. On this real system, we show that
Flick achieves 18µs migration times with fewer than 2K LoC
modifications in the off-the-shelf Linux operating system, as
opposed to hundreds to thousands of microseconds overhead
and tens of thousands LoC modifications in the prior work.
Our experiments with a BFS application show that Flick
achieves up to 2.5x speedup when compared to a system that
does not perform thread migration.

The rest of this paper is organized as follows. Section II
provides an in-depth discussion of the background and moti-
vation of this work. Section III describes the architecture of
Flick. Section IV describes the details of the implementation.
Section V presents our case studies and evaluation. Section VI
discusses related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

Today’s systems use heterogeneity to improve performance
and efficiency. While the most common forms of hetero-
geneous systems are still general-purpose cores with accel-
erators such as GPUs, researchers are also exploring hetero-
geneous multi-cores, which integrate general-purpose cores
with different characteristics in one system. By leveraging
each core’s strengths, such as high performance or low power
consumption, heterogeneous multi-core systems achieve high
overall execution efficiency, while maintaining the flexibility
to support a wide range of tasks because the execution
units are still “general purpose.” Among the various types of

heterogeneous multi-core systems, heterogeneous-ISA multi-
core systems represent an extreme case for combining cores
with different architectures (ISAs) to achieve efficiency with
both specialization (heterogeneity) and parallelism (multi-
core). Studies have shown that heterogeneous-ISA multi-core
systems can achieve 21% speedup and up to 23% energy
savings compared to homogeneous multi-core systems [3].

A. Heterogeneous-ISA Multi-Core Integration

There are several ways to integrate cores with different
ISAs, primarily depending on the physical locations of the
cores. On one end of the spectrum, different cores can be
tightly coupled into one chip to form a heterogeneous-ISA
CMP or MPSoC. The cores can share the same memory
hierarchy and have low-latency communication with each
other. However, although heterogeneous-ISA CMPs have been
proposed in academia [3], they are still rarely seen in the field.
On the other end of the spectrum, a data center that connects
processors with different ISAs using a high-speed network
is also a heterogeneous-ISA system [12]. However, because
the cores are spread across servers, developers are limited to
distributed programming techniques, and the communication
overheads are high.

An interesting integration option, which lies in the middle,
spreads heterogeneous-ISA cores across multiple chips, but
still within one machine. Many components of modern systems
already have their own cores, using different ISAs from
the host cores, executing jobs specifically targeted for those
components. Common examples include servers with Smart
NICs, NVMe controllers, and FPGAs with integrated cores.
The cores are typically used as NxPs, as they reside close to
the subjects they are working on, such as network, storage, or
accelerators, providing low data access latencies for their tasks.
Such tailored architectures make the NxPs highly efficient for
their target workloads. More importantly, because these NxPs
are located within the same machine as the host CPUs, it
is relatively easy for them to share the memory space and
communicate with the host CPUs. As a result, if the NxPs
can be exposed to and utilized by developers, many of today’s
systems can provide new opportunities to achieve better overall
system performance and efficiency.

B. Programming Style and Challenges

Unfortunately, although hardware designers are making
their best effort to improve system efficiency through hetero-
geneity, heterogeneous-ISA multi-core systems inherit all of
the programming challenges from heterogeneous systems, in
addition to facing the obstacles of concurrently using multiple
ISAs. The difficulty of developing software for heterogeneous-
ISA multi-core systems introduces a heavy burden on the
developers, limiting adoption.

Unlike GPUs, which have widely adopted programming
frameworks such as CUDA and OpenCL, there are no
generally-accepted solutions for software on general-purpose
cores with different ISAs. In some cases, multiple indepen-
dent operating systems are run across the heterogeneous-ISA

cores. Developers must partition the software into completely
independent applications, compile and run them separately
for each copy of the operating system, and manually handle
the communication and data movement using RPCs. For NxP
systems, developers usually treat the NxPs as slave processors
and explicitly use the offload engine programming style, where
the host CPUs prepare data and job commands in the form of
descriptors and let the slave cores fetch the descriptors and
execute the jobs.

Notably, adapting the GPU programming frameworks for
heterogeneous-ISA multi-core systems does not provide a gen-
eral programming solution for most NxPs. GPU frameworks
are designed around computational kernels, targeting massive
parallelism, bulk data transfer, and coarse grain control from
the host. Software for traditional multi-core systems that would
be ported to NxPs either does not share these characteristics
or would require significant changes to adapt it for the GPU-
centric programming frameworks.

Without a convenient NxP programming framework, de-
velopers must tear apart the original software and handle
each piece separately, breaking the integrity of the software
and adding extra work for software maintenance. Rewriting
software in different programming styles and frameworks
is time-consuming and error-prone, and may require addi-
tional debugging and verification efforts. Manually handling
communication and data movement between cores requires
careful work to avoid performance loss. As a result, al-
though heterogeneous-ISA multi-core systems sound attractive
in theory, the problems faced by software developers make
developing such NxP systems less attractive in practice.

C. Heterogeneous-ISA Operating Systems

To address the programmability challenges, researchers
have proposed creating new or modifying existing operating
systems specifically for heterogeneous-ISA multi-core sys-
tems [11], [13]. The goal is to provide a shared-memory
homogeneous multi-core environment to software developers
while hiding all complexity within the operating systems.
Developers can design software with their convenient and
familiar shared-memory programming style, or compile and
run existing software, ideally without any modification.

The key to hiding the complexity is the ability of the oper-
ating system to migrate threads between cores with different
ISAs, transparently to the users. When the software encounters
code that needs to run on a core with an ISA different from the
current one, the operating system suspends the thread on the
current core, transfers the thread state to the other core, and re-
sumes execution on the target core. The operating system must
handle the ABI (Application Binary Interface) differences
between ISAs, including calling convention, stack layout, and
system calls, to ensure that the thread runs correctly on the
target core. In addition to handling the heterogeneity, operating
systems must also manage shared resources, such as memory
and storage, so the threads can access the data and instructions
they need from all cores they are running on.

While offering a friendly programming environment to
developers, operating systems must minimize the impact on
the efficiency that comes along with the convenience. The
abstraction layer between the software and the heterogeneous-
ISA multi-core hardware introduces overhead and affects the
system efficiency. Thread migration requires extra cycles to
suspend and resume threads, as well as handle the ABI
differences. Transferring thread state consumes bandwidth and
time. Managing system resources and providing availability
also requires effort from the operating system. These over-
heads can reduce the benefits of the heterogeneous-ISA multi-
core systems, forcing developers to return to the complicated
offload engine programming style to achieve higher efficiency.

Although prior works provide useful abstractions to devel-
opers, they suffer from high overhead. To enable threads to
freely migrate between cores with different ISAs at any exe-
cution point, prior work employed many complex techniques,
such as binary translation and stack frame transformation,
which can take hundreds of microseconds to several milli-
seconds. Compared to context switches or page faults, which
usually take a few microseconds, high overhead prevents
frequent thread migration, limiting usefulness.

In addition to the runtime overhead, to implement the thread
migration techniques and support data management, prior
work either develops new operating systems from scratch,
which limits their use to academia or research labs, or heavily
modifies existing operating systems, which creates difficulties
for maintenance. Either situation hampers the adoption of
heterogeneous-ISA multi-core systems.

D. Opportunities

High-overhead techniques for integrating heterogeneous-
ISA cores are typically not appropriate for NxP systems.
Because NxPs are usually less powerful than the host CPUs,
the system should migrate a thread to an NxP only when
the thread is working on something that the NxP is close
to. For example, when running graph workloads where the
graph is stored in NVMe, only the graph traversal function
should run on the cores close to the NVMe storage. The
rest of the program, including the operations after the desired
nodes have been found, should still run on the host CPUs. This
characteristic largely reduces the number of migration points
in the program, and also makes the migration points static,
usually at the function call and return boundaries. By utilizing
this fact, the operating system no longer needs most of the
techniques used in the prior work, eliminating the overhead
and complexity that comes with those techniques.

The unified memory space between the host and NxP
provides another opportunity to reduce the migration overhead
for NxP systems. Conventional software threads must have
access to the shared data and instructions from any core where
they run. The system bus offers unique opportunities for fast
and efficient unified memory in NxP systems because system
interconnect protocols such as PCIe already allow the CPUs
and devices to share the same global memory view. Interfaces
such as OpenCAPI [14] and Gen-Z [15] will provide even

lower latency and better cache coherency than PCIe. With a
unified memory space, the thread migration process does not
require address translation and can avoid the serialization and
transfer of data between different memory islands.

Restricting the migration points to function call and return
boundaries and utilizing a unified memory space for the host
and system components enables Flick, a Fast and Lightweight
ISA-Crossing Call mechanism for migrating threads in NxP
systems. Flick (1) attains low-overhead thread migration, (2)
retains the same programming and execution environment
as a homogeneous multi-core system, and (3) achieves this
with minimal changes to the existing compiler toolchains and
operating system.

III. THE FLICK ARCHITECTURE

The Flick architecture comprises several inter-dependent
components, including the hardware and software to support a
unified memory space, the thread migration mechanism, gener-
ation and execution of multi-ISA binaries, and modifications
to the operating system. This section describes each of the
components in detail.

A. Unified Memory Space

Flick’s thread migration mechanism relies on a unified
memory space, where virtual addresses within a thread’s
address space point to the same physical addresses from both
the host CPUs and NxPs, and all physical addresses point
to the same system component, such as host memory or
NxP local memory. A unified memory space allows software
threads to access the same instructions and data while running
on different cores, without the need to modify application
source code. Moreover, it is possible to directly pass pointers
between the host and NxP without instrumenting the code with
address translation.

To enable a unified physical memory space, Flick uses a
PCIe bridge to map the host memory into the NxP address
space, and at the same time exports the NxP memory and
peripherals to the host system as PCIe BAR regions. For a
unified virtual memory space, the NxP utilizes the local TLB
to translate the virtual addresses to the same physical addresses
as the host CPUs, with the help of a local MMU that walks
the host page table structures on NxP TLB misses, using the
same Page Table Base Register (PTBR)1 as the host CPU, as
shown in Figure 1. By using a local MMU to populate TLBs
on demand, Flick avoids host interaction while the NxP is
performing context switches.

The main challenge in having MMUs local to the NxP is the
TLB miss penalty, due to the long latency of page table walks
on page tables stored in the host memory. However, although
it is difficult to reduce the page table walk latency, the TLB
miss rate is mitigated in modern systems by using huge pages,
which amortizes the cost of the high latency operations across
many accesses. More specialized NxPs also have the freedom
to implement other address translation mechanisms, such as
segments [16], [17], to further reduce TLB misses.

1For example, the CR3 register in the x86 architecture.

Physical Memory

NxP Host

TLB TLB
MMUMMU PTBR

Virt Addr

Phys Addr

Fig. 1. When executing a thread, both the NxP and the host use the same
physical address as the Page Table Base Register (PTBR) and therefore have
the same view of virtual memory. This allows addresses to be shared between
cores seamlessly.

B. Thread Migration on No-Execute Page Fault

Migrating threads between the host and NxP cores requires
extra code at the function call and return boundaries. To
make the migration transparent to the software developers,
the migration code must be inserted into the program by the
compiler, or at runtime by the operating system.

Although letting the compiler insert migration code using
customized system calls appears straightforward, it has two
major drawbacks. First, software often uses function pointers,
which can point to any function, with no way for the compiler
to know whether the pointer targets a host function or an NxP
function at runtime. To handle function pointers, the compiler
would be forced to insert migration code at the beginning and
end of all functions. Moreover, some functions can be invoked
by both host cores and the NxP cores, requiring such migration
code to incur additional overhead to check where the thread
is currently running to determine whether or not to trigger a
migration. Second, typical software routinely calls functions
in pre-compiled shared libraries (e.g., the standard C library),
which do not have migration code inserted. This makes
supporting migration for programs that link against shared
libraries challenging with a static compiler-based approach.

Instead of inserting migration code using a compiler, Flick
uses the OS to trigger and manage thread migration. We use
the Non-Executable (NX) bit of the x86 page table entries to
implement page fault triggered migration, shown in Figure 2.
For functions that should run on the NxP, we load binaries into
their own memory pages and mark the NX bit in the page table
entries for these pages. When the host CPU tries to execute
such functions, an instruction page fault occurs. The operating
system page fault handler gets the function address and passes
it to a user-space migration handler linked into the application
binary. The migration handler gathers the parameters of the
function call and other necessary information, such as the
values of PTBR and PID, and performs a “call migration”
from the host to the NxP. The NxP scheduler uses the provided

Host NxP

(a)

(c)

(b)

(e)
(d)

(g)

(f)

Worker Thread
Idle Thread
Other Thread

call nxp_func

call host_func

return from host_func

return from nxp_func

Fig. 2. (a) The host calls an NxP function. It encounters an NX page fault and
the thread migration process begins. The migration handler on the host sets up
the host-to-NxP call descriptor, sends it to the NxP side, and deschedules the
thread from the host processor. (b) The descriptor is picked up on the NxP side
and the thread is context switched in to execute the target function. (c) During
the NxP function execution, the NxP calls a host function, which triggers a
page fault on the NxP side and sends an NxP-to-host call descriptor. (d) The
host receives the descriptor and starts executing the target host function. (e)
The host finishes the function and sends the host-to-NxP return descriptor. (f)
The NxP resumes the original target function and eventually sends the NxP-
to-host return descriptor to the host. (g) The host receives the return value
from the descriptor and continues execution.

information to call and execute the target function. When
the function finishes execution, the NxP scheduler performs
a “return migration” from NxP to the host, which includes
triggering an interrupt on the host CPU to take back the thread
and get the function’s return value.

Similarly, the NxP can call functions that should run on the
host CPU using the same mechanism. The difference is that,
on the NxP side, we use the NX bit in the opposite direction.
When the NxP is trying to call a function that resides in a
page without the NX bit set, a page fault occurs and the page
fault handler of the NxP performs a “call migration” from the
NxP to the host CPU. After the function finishes execution,
the host CPU performs a “return migration” from the host to
the NxP and the thread resumes execution on the NxP.

Although a page fault for a function call may appear
to be a significant overhead, because a developer explicitly
designated the function to run on the NxP side, the benefit of
running on the NxP must be significant enough to mitigate this
overhead. Notably, gathering information such as the function
call arguments and passing them to the NxP is a necessary
overhead even for the conventional offload style programming
model. The combination of the unified memory space and the
NX-bit-triggering thread migration serves as a low-overhead
mechanism that allows transparent migration from the host to
the NxP core, and vice versa.

C. Multi-ISA Binaries

Flick aims to provide the same software execution environ-
ment as the single-ISA system, where users expect to launch
just one binary file for their application. As a result, the bi-
nary file running on heterogeneous-ISA systems must contain
instructions for both ISAs. This idea is similar to Universal
Binary [18] or FatELF [19]. However, for Universal Binary
and FatELF, the entire program is compiled into instructions
for each ISA and stored in one binary file, whereas in Flick, the
program is logically partitioned into different ISAs at function
granularity, and each function has its target ISA and will only
run on a core supporting that ISA. Instead of letting the linker
prepare several copies of binaries for the entire program in
one executable, the Flick linker handles ISAs simultaneously,
resolving addresses of the functions for different ISAs within
one shared address space. To prepare and execute multi-ISA
binary files, the toolchain and compilation process require
changes, such as separating the .text section of each ISA,
relocating the symbols using each ISA’s relocation methods,
and marking the NX bits of the page table entries while
loading the binary. These toolchain changes are transparent
to the application developers, requiring only the addition of
command-line flags to the compilation and linking processes.

D. Instruction and Data Placement

In NxP systems, each core can access all memory regions
in the system, including the host memory and the NxP local
memory, which creates a NUMA environment. The host cores
can access the host memory with lower latency than accessing
the NxP local memory, and visa versa. Ideally, each core
should access data within its NUMA region as much as pos-
sible. Moreover, today’s dominant system bus protocol, PCIe,
has limited cache coherence capabilities, requiring special care
when determining the placement of the instructions, stack,
heap, and data for multi-ISA executables.

For instructions, because the instruction footprint for the
NxP cores can be relatively small, the .text sections for
the NxP cores can reside in the host memory, relying on the
I-cache of the NxP core to minimize access latency.

For the stack, because the thread migration in Flick happens
only at function call boundaries, we assume that each core is
unlikely to access data that other cores store in the stack. Based
on this assumption, we extend all migrating threads with their
own stack space in the NxP local memory. Threads typically
use their local stacks, avoiding costly memory accesses over
the system bus in most cases. In the rare event that a callee
function uses pointers to access data on the caller’s stack
frame, the unified address space ensures correct execution,
even if the parent executed on a different core.

For the heap, the system has separate memory allocators
for each core’s local memory. While linking the program, the
linker relocates the memory allocation calls in each core’s
.text section to the corresponding memory allocator, avoid-
ing application-level code changes. If software developers
want to allocate memory in a particular memory region, the
allocation can be annotated in the source code to indicate

Host
Memory

NxP Side
Memory

Host
Memory

NxP Side
Memory

Host
Memory

NxP Side
Memory

Host View of
Memory Space

NxP Side
Memory Map

NxP View of
Memory Space

BAR 0 Remap

0x80000000

0x00000000

0xA0000000

Fig. 3. The host system and NxP platform share the same physical address
space through remapping of the BAR region on the NxP side.

which allocator to use. The latter can be useful, for example,
for the near-storage computation case, where the host cores
allocate and initialize the data for the near-storage-processors
to operate on.

Finally, in Flick, the .data and .bss sections are still
placed in the host memory, necessitated by the limited PCIe
cache coherency capabilities. NxP cores cannot have coherent
D-caches whose contents are automatically invalidated or
written back on host access, forcing global variable accesses
to cross the system bus. As a workaround, if coherence with
the host is not required for a frequently-accessed variable or
data structure, software developers can use directives in the
source code to indicate the variables that should be allocated
in the NxP local memory. The compiler can then place
these variables into NxP-specific .data and .bss sections,
enabling the loader to map and copy these sections into the
NxP local memory. Notably, unlike PCIe, emerging system bus
protocols such as CCIX [20], OpenCAPI [14], and GenZ [15]
can avoid such workarounds.

IV. IMPLEMENTATION DETAILS

To prototype Flick, we built a heterogeneous-ISA multi-core
system comprising x86-64 host cores and a 64-bit RISC-V
NxP core [21]. The choice of the x86-64 ISA was dictated
by its dominance in modern servers. The RISC-V ISA, while
being less ubiquitous, is an open and free ISA and has many
available implementations, which allowed us to tailor some of
the NxP core components, such as the TLB and MMU, for
our specific needs. We adapted the Linux kernel and standard
GNU tools to enable compiling, linking, and loading multi-
ISA application binaries.

A. Unified Memory Space

To share the same view of the unified memory space
between the host system and the NxP cores, we customized
the RISC-V core MMU and TLB by replacing the built-
in TLB and MMU with their x86-like counterparts. These
counterparts understand and use the host x86-64 page table
structure including huge page support (i.e., 2MB and 1GB
pages). The L1 I-TLB and D-TLB each have 16 entries with

one cycle latency to support fast accesses. This is especially
important for data accesses due to the PCIe restrictions. The
data cache can only be enabled for the NxP memory regions
that do not require coherence with the host cores. Notably,
our TLB and MMU cause the NxP cores to always use
virtual addresses. To bootstrap the system in this environment,
we initially set one I-TLB entry that maps the NxP core
reset address to a small ROM containing the NxP bootstrap
instructions. The bootstrap instructions set up the NxP stack
pointer and jump to the NxP scheduler, which starts triggering
TLB misses for normal execution in the virtual address space
shared with the host.

On a TLB cache miss, the TLB blocks the memory access
until the MMU traverses the page table structure in the host
memory to update the virtual-to-physical translation in the
TLB. Instead of implementing a fixed-function MMU that
walks the x86 page tables, we implemented the MMU as a tiny
micro-controller core. This helps to ease development efforts
and will enable future research on the optimization of the NxP
address translation.

A programmable MMU opens up an opportunity for run-
time optimization. The MMU can be configured to open
holes in the NxP virtual address space, bypassing the page
table traversal. These holes allow the NxP core to directly
access NxP components for debugging purposes or to access
a large region of local physical memory without traversing
page tables in the host memory, allowing implementation of
high-performance private scratchpad memories.

Other than performing the virtual-to-physical translation,
the TLBs also ensure that the NxP has the same view of
the physical memory space as the host system. The host
memory directly maps to the same physical addresses on the
NxP platform starting at address 0x0. However, the NxP local
memory and peripherals are exposed to the host using PCIe
BARs, whose addresses are assigned dynamically by the host
system. To match the view of the physical address space on
the NxP core, we add remapping functionality to the TLB.
This remapping shifts the addresses of the local memory and
peripherals to the correct NxP-side local address instead of
the host-side address. An example of the remapping is shown
in Figure 3. The NxP’s local memory is designed to start
at address 0x80000000 and is exposed to the host as BAR0.
However, the host system maps BAR0 at address 0xA0000000.
Because the BAR addresses are dynamically assigned by the
host, a driver running on the host calculates the mapping
offset 0x40000000 and writes it into a control register in
the NxP TLB. During execution, when the TLB translates
a virtual address into a physical address that falls into the
BAR address range starting at 0xA0000000, the TLB uses the
control register content to adjust the physical address, forming
the actual address (starting with 0x80000000) used by the
NxP local address mapping for the NxP local memory and
peripherals. Adding this address offset into the TLB enables
the NxP to observe the same physical memory space as the
host cores for both host memory and the NxP components.

Listing 1. Host migration handler pseudocode.
1 host_migration_handler(arg1, ...)
2 {
3 if (first_time_migration)
4 allocate_nxp_stack();
5 prepare_host_to_nxp_call(arg1, ...);
6 ioctl_migrate_and_suspend();
7 while(nxp_to_host_call) {
8 args = fetch_nxp_call_desc();
9 host_rtn = call_target_host_func(args);

10 prepare_host_to_nxp_return(host_rtn);
11 ioctl_migrate_and_suspend();
12 }
13 nxp_rtn = fetch_nxp_return_desc();
14 return nxp_rtn;
15 }

B. Thread Migration

This section details the Flick thread migration mechanism.
We describe the software and hardware components that
ensure correct execution and low overhead when performing
thread migration across cores with different ISAs. We split
the description into two scenarios of thread migration: migra-
tion that happens when the host calls an NxP function, and
migration that happens when the NxP calls a host function.

1) Host Calls NxP Function: With Flick, a thread should
always start its execution on the host. The migration to the NxP
core happens when there is a need to call an NxP function. As
a result, the first migration of a thread is always a host-to-NxP
call migration.

When a thread running on the host fetches NxP core
instructions from memory, the NX bit in the page table entry
triggers an INST page fault, transferring control to the page
fault handler. In the page fault handler, the faulting address
is the address of the function that should run on the NxP.
This address is automatically stored by the host core on the
stack as the return address of the page fault handler. We save
the faulting address in the task_struct of the thread and
replace this address on the stack with the address of Flick’s
host migration handler. When the page fault handler returns,
instead of fetching the NxP instructions again, the thread
resumes execution in the host migration handler and starts
the migration process from the host to the NxP.

The host migration handler, shown in Listing 1, first ex-
amines whether the NxP stack pointer has been initialized—
i.e., it is not NULL. An uninitialized stack pointer indicates
that migration is occurring for the first time for the current
thread. This causes the migration handler to allocate and set
up a block of NxP local memory as the thread’s NxP stack
(lines 3–4 in Listing 1). Because we hijack a function call
and redirect execution to the migration handler, the handler
receives the original function’s arguments as the handler’s own
arguments. The host migration handler collects its arguments
and passes them to the kernel using an ioctl() system
call (line 6 in Listing 1). Internally, the ioctl() collects
auxiliary information, such as the target address, stack pointer,
CR3 value (the x86 PTBR), and PID (to identify which process
to wake up after execution eventually returns to the host).
These values, taken from the thread’s task_struct, are

Listing 2. NxP migration handler pseudocode.
1 nxp_migration_handler(arg1, ...)
2 {
3 prepare_nxp_to_host_call(arg1, ...);
4 migrate_and_suspend();
5 while(host_to_nxp_call) {
6 args = fetch_host_call_desc();
7 nxp_rtn = call_target_nxp_func(args);
8 prepare_host_to_nxp_return(nxp_rtn);
9 migrate_and_context_switch();

10 }
11 host_rtn = fetch_host_return_desc();
12 return host_rtn;
13 }

packaged together with the function arguments into a host-
to-NxP call descriptor. Finally, the ioctl() system call
concludes by suspending the thread on the host and triggering
the transfer of the descriptor to the NxP. The thread will next
resume execution on the NxP.

To minimize the overhead of transferring the descriptor
using multiple memory operations across PCIe, Flick uses a
DMA controller to copy the entire descriptor using one PCIe
burst transfer. The NxP scheduler polls a DMA status register
to discover when at least one migration descriptor has been
transferred from the host. When the NxP scheduler observes
a change in the DMA status register, it reads the host-to-NxP
migration descriptor and extracts the NxP stack pointer, using
the stack pointer to context switch to the target thread. As
the NxP stack is carefully initialized by the host beforehand,
the target thread starts execution inside the while() loop
of the NxP migration handler (line 6 in Listing 2). Inside
the while() loop, the NxP calls the target function using
the target address and arguments from the host-to-NxP call
descriptor. After the target function call returns, the return
value and PID are stored in an NxP-to-host return descriptor,
and the thread performs a context switch back to the NxP
scheduler (line 9 in Listing 2). The scheduler then transfers
the NxP-to-host return descriptor to the host memory using
the DMA controller.

The DMA controller triggers an interrupt on the host system
to wake up the thread using its PID. The thread wakes up
inside the ioctl() system call of the migration handler and
returns to the host migration handler with the received NxP-
to-host descriptor (line 6 in Listing 1). The migration handler
checks if this is an NxP-to-host call migration (explained
further) or a host-to-NxP return migration. For a return from
the NxP core, the migration handler returns the return value
stored in the return descriptor (lines 13–14 in Listing 1).
Because we hijack the original function call, this return will
be just like a normal return from the target function as though
execution never left the host core. The migration process and
execution on the NxP core is therefore entirely transparent.

Any future attempts to call functions compiled for the NxP
ISA will similarly cause the INST page fault and trigger a
migration, reusing the NxP stack allocated previously. The
NxP system will perform a context switch and the thread
will resume inside the while() loop of the NxP migration
handler where it previously stopped (line 9 in Listing 2), re-

peating the process of receiving descriptors, calling functions,
and returning back to the host.

2) NxP Calls Host Functions: Just as the host can call
functions that should run on the NxP, the NxP can call
functions that should run on the host, requiring migration of
the thread back to the host system. Recall that our host system
relies on the INST page fault. Notably, migration from the
RISC-V NxP core to the host can be triggered by an additional
mechanism. First, similar to the host, the INST page fault can
be triggered by the MMU when the NxP attempts to fetch
instructions of a function compiled for the host ISA. In Flick,
the meaning of the NX bit in the page tables is inverted for
the NxP, requiring the TLB to trigger this exception on pages
where the NX bit is not set). Second, as x86 has variable-
length instructions, the instruction fetch of a host function can
trigger a RISC-V misaligned instruction address exception.
We treat both exception types as indicators of a need for
migration, using the exception mechanism to transfer control
to the RISC-V migration handler shown in Listing 2.

The NxP migration handler is similar to its host counterpart,
except that the NxP migration handler does not perform stack
initialization, because all threads originate on the host and
have a stack there. The migration handler prepares an NxP-
to-host call descriptor and uses the DMA controller to copy
the descriptor to the host memory (lines 3–4 in Listing 2),
triggering a host core interrupt whose handler wakes up the
corresponding thread (based on its PID), which was previously
suspended inside the ioctl() call.

Execution on the host resumes in the user space migration
handler (line 6 in Listing 1), which checks whether this is a
return from a call to an NxP function or if it is an NxP-to-host
call. In the latter case, the host migration handler goes into a
while() loop and retrieves the target function address and
arguments from the descriptor. Then it calls the function on the
host (lines 8–9 in Listing 1). When the host function returns,
the migration handler prepares a host-to-NxP return descriptor
with the return value to send back to the NxP. The migration
handler then calls ioctl() to initiate the DMA transfer of
the descriptor. Similar to the host-to-NxP migration, the thread
on the host (lines 10–11 in Listing 1) is suspended.

To allow the NxP core to make any number of calls to the
host functions, the host thread remains in the while() loop
as long as it continues being woken up by the NxP-to-host
call migrations. However, if the host thread is woken up with
a request for an NxP-to-host return migration rather than NxP-
to-host call migration, the host breaks out of the while()
loop, allowing the thread to resume execution on the host at the
original call site where the first migration to the NxP occurred.

On the NxP, when the NxP scheduler receives a migration
descriptor, it performs a context switch to the corresponding
thread, which was previously suspended inside the NxP mi-
gration handler (line 4 in Listing 2). The migration handler
checks if this is a return migration from the host or a call
migration from the host. For a return, the NxP migration
handler initiates the return procedure with the value received
from the descriptor (lines 11–12 in Listing 2). For a call,

the NxP migration handler enters a while() loop to keep
executing function calls from the host, and remain in the loop
until it receives a host-to-NxP return descriptor to break out of
the loop and return control to the original NxP caller function.

Nested Bidirectional Function Calls: Both the host and the
NxP migration handlers are designed to be reentrant. Notably,
we rely on all functions that can trigger a migration to follow
the standard function call convention. This ensures that multi-
ple copies of the migration handlers’ local variables can reside
in different locations of a single thread’s stacks simultaneously
and not interfere with each other. Consequently, the page-fault-
triggered migration mechanisms we describe above allow the
application code to freely call any function in the executable
at any time, even recursively, as the system transparently
migrates execution back and forth between cores with different
ISAs as needed.

C. Multi-ISA Binary Generation and Execution

To generate and execute multi-ISA binaries on a conven-
tional Linux system, we introduced several changes to the
compiler, the linker, and the loader toolchain.

1) Compiler: To compile code for multiple ISAs, we rely
on user annotations in the source code. We use scripts to
partition the annotated source code, placing functions that
target different ISAs into separate temporary source files,
allowing us to separately invoke unmodified compilers for each
ISA target. Because Flick migration happens automatically at
runtime through a transparent page fault mechanism, there
is no need to perform any source or binary instrumentation.
Furthermore, as both the host and NxP cores share the same
virtual address space, the compiler never needs to convert
any addresses or make any special provisions for pointers.
The only notable change we introduce is to the RISC-V
toolchain to change the names of the resulting ELF sections.
For example, the .text section containing compiled code is
named .text.riscv. This approach provides a clean way
to handle the different ISA targets without complex compiler
modifications such as merging the compilers for multiple ISAs.

2) Linker: After generating all object files, we use the
native host linker to merge these object files using a custom
linker script. The linker script prevents the NxP sections
from being automatically merged with the host sections and
maintains the section names that indicate the target ISA. Our
custom linker script also ensures 4KB alignment for all .text
sections to ensure that pages holding code for each ISA have
different page table entries.

After the object files are merged, the linker performs
symbol relocation. We modified the linker sources to include
the relocation functions for both the host (x86-64) and the
NxP (RISC-V) cores. The linker invokes the corresponding
relocation functions based on the section name, resolving
symbols across sections and populating all internal references
in the resulting multi-ISA executable. Because all cores share
the same virtual address space, the linker links all section
normally, without any special address handling. Notably, the

TABLE I
SYSTEM SPECIFICATION

Host System Dual Xeon E5-2620v3, 64GB DDR4
FPGA Board NetFPGA SUME (Xilinx xc7vx690tffg1761-3)
FPGA Memory 4GB DDR3
NxP Core In-order Scalar RV64-I @ 200MHz
Interconnect PCIe 3.0 x8
Operating System Ubuntu 18.04.2, Linux 5.2.2
Toolchain GCC 8.3.0, binutils 2.30, glibc 2.27

executable produced after linking has all of its internal refer-
ences resolved, including instruction and data references that
cross ISA boundaries; host code directly refers to the code
and data in the NxP sections and NxP code directly refers to
the code and data in the host sections of the binary.

3) Dynamic Linker & Loader: The Flick multi-ISA binaries
contain one .text section for each ISA, with the load address
of each section aligned to a page boundary. We added support
for these multi-ISA binaries to the GLIBC user-space dynamic
linker. When loading a .text section of the executable,
the linker uses an extended mprotect() system call to
configure the appropriate bits in the page table entries based
on the section name. This enables triggering thread migration
on their respective page faults. For example, for the dual-ISA
executables with RISC-V as the NxP ISA and x86-64 as the
host ISA, the loader sets the NX bit for the .text.riscv
section and leaves it cleared for the x86 .text section.
Once loading is complete, the program starts its execution as
usual, jumping to the application entry point. The page fault
handler and migration handler will transparently migrate the
thread to an appropriate NxP or host core at any point when
ISA boundaries are crossed throughout the program execution.
Notably, for executables with more than two ISAs, the loader
would have to use additional bits in the page table entries to
distinguish between the different NxP ISAs.

D. Kernel Changes

The Flick thread migration mechanism requires changes to
the Linux kernel. Flick relies on page faults to trigger the
thread migration and exploits the mprotect() system call to
mark pages as non-executable. We modified the default Linux
page fault handler to recognize NX page faults and use them
to trigger migration. When an NX page fault occurs, a handler
manipulates the stack such that it returns to Flick migration
handler as described in Section IV-B.

In addition to the NX page fault handler, Flick requires
modification to the kernel ELF loader to support multi-
ISA kernel modules. Similar to the multi-ISA executables,
the multi-ISA kernel modules include functions that should
run on the host (e.g., NxP platform initialization and host
ioctl()) and functions that should run on the NxP (e.g.,
NxP scheduler and NxP migration handler). We implement a
similar mechanism for multi-ISA modules in the kernel as for
the user-space programs. The compilation flow links together
a multi-ISA kernel module, and the kernel module loader is

NxP On-board DRAM

FPGA

RV64I
Core

AXI InterconnectMigration DMA

DDR Controller

PCIe Bridge

Host Machine

ITLB

DTLB

MMU

I$

D$

Block RAM (NxP stack)

Fig. 4. FPGA-based evaluation platform for Flick.

modified to handle the relocation functions for both the host
and the NxP cores according to the section name.

Finally, Flick requires a minor modification to the Linux
scheduler. When a user-space migration handler issues a
migration request via an ioctl(), the kernel creates a de-
scriptor for executing the target function, suspends the thread
on the host core by setting its state to TASK_KILLABLE,
runs the scheduler to context switch away from the thread
on the host, and triggers a DMA transfer of the descriptor to
the NxP. Notably, the Linux scheduler needs to be modified
to trigger the DMA controller after context switching away
from the running thread because, by the time the transfer
must be triggered, the thread execution has already been
suspended. To facilitate this, we add a “migration” flag to the
task_struct, which is set prior to suspending the thread,
and used to trigger the descriptor transfer from the scheduler
after the thread is suspended. Although this appears to be
a rather intrusive mechanism, it is necessary to trigger the
descriptor transfer after the thread has been suspended to avoid
a race condition where the NxP can receive the descriptor,
execute the target function, and return, all before the host
completes suspending the thread on the host core.

V. EVALUATION

To serve as a testbed for evaluating Flick, we prototyped a
heterogeneous-ISA system using an off-the-shelf Intel Xeon
server as the host and a PCIe-connected FPGA emulating
a device with an NxP. Details of our test environment are
presented in Table I, and Fig. 4 depicts the FPGA platform
we created. An in-order scalar RV64-I core [21] serves as an
example of NxP. It connects to on-chip block RAM for its
local stacks. On the FPGA board, we use a 4GB on-board
DDR3 SDRAM DIMM as the NxP side data storage. The
FPGA platform uses a PCIe bridge to connect to the host and
allows the RISC-V core to access the host memory. In the other
direction, the entire 4GB NxP side data storage is memory-
mapped on the host via a PCIe BAR region through the PCIe
bridge, enabling the host cores to directly access the NxP side
data storage with load and store instructions. Together, this
forms a shared memory heterogeneous-ISA multicore system.
Measurements show that the round-trip time for the host x86

TABLE II
THREAD MIGRATION OVERHEAD FROM PRIOR WORK AND FLICK.

Work Fast Cores Slow Cores Interconnect Overhead

ASPLOS’12 [11] MIPS @2GHz ARM @833MHz Not Considered ≈600µs
EuroSys’15 [13] Xeon E5-2695 @2.4GHz Xeon Phi 3120A @1.1GHz PCIe ≈700µs
ISCA’16 [6] Xeon E5-2640 @2.5GHz ARM Cortex R7 @750MHz PCIe Gen3 x4 ≈430µs
ARM Big-LITTLE [2] ARM Cortex A15 @1.8GHz ARM Cortex A7 Onchip Network 22µs

Flick (this work) Xeon E5-2620v3 @2.4GHz RISC-V RV64I @200Mhz PCIe Gen3 x8 18.3µs

TABLE III
FLICK THREAD MIGRATION ROUND TRIP OVERHEAD.

Host-NxP-Host NxP-Host-NxP

18.3µs 16.9µs

cores and the NxP RISC-V core to access the NxP side storage
are approximately 825ns and 267ns, respectively.

We use a Xilinx MicroBlaze soft core as a programmable
MMU to handle TLB misses by walking the page tables in
the host memory. The TLB miss penalty is high due to the
cross-PCIe memory accesses, but 1GB huge pages used for
the 4GB NxP side data storage allow only four TLB entries
to cover the NxP local storage, avoiding most time-consuming
TLB misses during normal operation.

For evaluation purposes, we first study Flick using mi-
crobenchmarks, providing a closely controlled environment to
understand and precisely characterize the system and measure
migration overhead. Then, we present an example breadth-first
search application, demonstrating the behavior of the Flick
technique on a practical problem.

A. Thread Migration Overhead

We first examine the thread migration overhead of Flick,
which is critical to the overall system performance. We created
a microbenchmark where the host calls a function on the
NxP that immediately returns. The microbenchmark calls this
function 10,000 times, and we measure the average round-
trip overhead from host to the NxP. Similarly, to measure
the overhead of the NxP calling a function on the host
processor, we let the NxP function call a host function, which
also immediately returns. We then subtract the host-to-NxP
call overhead from the measurement to get the NxP-to-host
overhead. The results are shown in Table III. We see that
Flick requires only 18.3µs and 16.9µs to do a Host-NxP-Host
and NxP-Host-NxP thread migration round trip, respectively.
Further investigation indicates that the host side page fault
only incurs 0.7µs of the total migration overhead, showing the
efficiency of the page fault triggered thread migration. Table II
compares this overhead to prior work, showing that Flick’s
migration overhead is already 23x to 38x less than prior work
on heterogeneous-ISA thread migration [6], [11], [13]. In fact,
Flick’s migration over PCIe is even faster than homogeneous-
ISA migration using the on-chip network within commercial
SoCs [2]. Notably, our NxP core is a simple soft core running
at only 200MHz. We anticipate that the overhead of Flick can
be further reduced when using hardened cores.

B. Microbenchmark: Pointer Chasing
To study the performance of Flick in a controlled environ-

ment, we developed a pointer chasing microbenchmark, which
traverses variable-length linked lists stored in the NxP side
storage. We chose pointer chasing as a representative example
of a data structure where it is beneficial to migrate the thread to
be close to the data being accessed. Our goal is to understand
how the overhead of thread migration can affect potential
speedup. The microbenchmark uses a loop to call a function on
the NxP to traverse the linked lists in the data storage, where
the nodes’ addresses are 8-byte aligned and randomly spread
across the 4GB space. We swept the number of traversed nodes
per function call from 4 to 1024, in increments of 4, and
measured the average time to finish the traversal. Traversing
lists of different lengths emulates different amounts of work
performed per migration. We then normalized the performance
to the baseline, where the host core directly traverses the linked
lists over PCIe. Additionally, to better understand how thread
migration overhead affects the overall performance, we also
measured the effect of introducing extra migration latency to
mimic the larger overheads incurred in the prior work.

Figure 5a shows the normalized performance when the host
frequently migrates the thread to the NxP, as no delay is
inserted between the function calls. At 32 memory accesses
per migration, Flick (shown as a solid black line) is able to
achieve the same performance as the baseline. As the number
of memory accesses increases, amortizing the thread migration
overhead, the Flick performance benefits increase and stabilize
at 2.6x, which is the relative difference in latency of the
host core and the NxP when accessing the NxP side storage.
The two dashed lines below Flick show the performance of
alternative systems with 500µs and 1ms migration latency.
Higher migration latency prevents the system from achieving
the baseline performance within a reasonably-small number
of accesses per migration. This demonstrates the crucial im-
portance of fast migration; we see that systems with higher
migration overheads require many more accesses to be done
per migration to show any benefit from NxP.

Figure 5b shows the result of infrequent migrations, where
the system only migrates a thread every 100µs. This corre-
sponds to a scenario where more work is done on the host
and therefore a smaller portion of the overall execution time
is spent on the pointer chasing. In this case, the migration over-
head becomes less significant and causes less penalty before
reaching the baseline performance. After 32 memory accesses
per migration, although Flick still outperforms the baseline,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 128 256 384 512 640 768 896 1024

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Memory Access per Migration

(a) No Migration Interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 128 256 384 512 640 768 896 1024

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Memory Access per Migration

Flick
500us TM latency
1ms TM latency

(b) 100µs Migration Interval

Fig. 5. Pointer chasing microbenchmark with different thread migration latency and migration interval.

TABLE IV
BFS DATASETS AND EXECUTION TIME IN SECONDS.

Dataset Vertices Edges Size Baseline Flick

Epinions1 76k 509k 16.7 MB 1.8s 2.4s
Pokec 1,633k 30,623k 1.0 GB 107.4s 90.3s
LiveJournal1 4,848k 68,994k 2.2 GB 240.5 s 220.9s

the benefit of thread migration is reduced to approximately
2x. Overall, the results highlight the importance of thread
migration latency, showing that Flick’s low overhead makes
it effective even in case of frequent migration of small jobs.

C. Application: BFS

The BFS (breadth-first search) benchmark is a graph traver-
sal benchmark from Graph500 [22]. BFS begins with a source
vertex and recursively explores its neighbors until all reachable
vertexes are discovered. Graph traversal is a central component
of many analytics problems, such as recommendation systems,
social media modeling, and route optimization.

We use three social network datasets from the Stanford
Network Analysis Project (SNAP) [23], shown in Table IV, to
evaluate Flick with different graph sizes. The graphs generated
from the datasets are stored in the NxP side DRAM. Flick
migrates the entire traversal function to the NxP. The host
calls the traversal function 10 times in a loop and calculates
the average execution time of one iteration. To emulate a
common scenario where the host software must perform a task
for each vertex, the traversal function running on the NxP calls
a dummy host function for each newly discovered vertex. This
causes execution to migrate to the host and return.

We compare the average execution time to a baseline where
the host core directly traverses the graph via PCIe, shown
in the two rightmost columns of Table IV. For the smallest
dataset, because the vertex-to-edge ratio is higher than the
two larger datasets, the migration overhead of Flick causes
the performance to be lower than the baseline. However, for
the two larger datasets, even though the thread must migrate
for every new vertex, Flick still outperforms the baseline by
9% to 19%. Such a speedup would not be possible for an
approach with higher migration overhead. The result further
highlights the need for low overhead, showing how Flick
enables applications with frequent thread migration.

VI. RELATED WORK

Heterogeneous-ISA Thread Migration. Prior work on
heterogeneous-ISA thread migration demonstrates the benefits
of heterogeneous-ISA systems [11], [13]. However, the migra-
tion overhead of these techniques is on the order of several
hundred microseconds, which limits their use to infrequent
thread migrations. In this work, we showed that Flick’s mi-
gration overhead is significantly lower, cutting overheads from
hundreds of microseconds to 18 microseconds, facilitating
frequent thread migration. Beyond the performance benefits,
Flick also requires much fewer modifications to the operating
system. For example, prior work reports 37K LoC changes to
the Linux kernel and 5K LoC changes to the compiler [13],
while Flick requires less than 2K LoC in total. Although
not targeting heterogeneous-ISA multicores, one prior system
used the UD fault (Invalid Opcode) to trigger unidirectional
thread migration for overlapping-ISA heterogeneous multi-
core systems [24], whereas Flick uses the Non-Executable
(NX) bit in the page table entries to support bidirectional thread
migration between cores with different ISAs.

Heterogeneous Multi-core Operating Systems. Several
works on heterogeneous multi-core operating systems also
support cores with different ISAs in one system [9], [10].
However, these systems completely redesigned the OS, having
limited impact on the acceptance of heterogeneous-ISA sys-
tems. On the other hand, Flick requires only minor changes to
the existing operating systems and shows benefits on widely
available commodity servers.

Unified Memory Space. One of the requirements of Flick,
although not a focus of this work, is the unified memory
space for the entire system. Many designs already target virtual
memory support for GPUs, both from industry [25], [26] and
academia [27]–[29], as well as virtual memory support for
accelerators [30], [31]. Flick can benefit from the advances in
accelerator TLB design and improved support for accelerator
virtual memory. A distinction from prior work is that Flick
unifies both the virtual and physical address spaces.

NxPs. Works on near-storage-processing [6] and near-
memory-processing [32] demonstrated those NxPs either im-
proving system performance or power efficiency. However,
the conventional offload engine programming style to utilize

NxPs breaks the integrity of the software and requires manual
orchestration of communication and data movement between
cores. Flick utilizes virtual memory support and page fault
triggered thread migration to enable transparent utilization of
NxPs and still achieves their performance benefits.

VII. CONCLUSIONS

In this work, we proposed Flick, a Fast and Light-Weight
ISA-Crossing Call mechanism, for transparent thread migra-
tion in heterogeneous-ISA multi-core systems. By restricting
the migration points to function boundaries, unifying the phys-
ical address space, and leveraging hardware virtual memory,
Flick eliminates the majority of the thread migration overhead
while requiring only minor changes to existing operating
systems. We evaluated Flick using a PCIe-connected FPGA
with off-the-shelf hardware and software. Experiments with
microbenchmarks and a BFS application showed that Flick’s
thread migration overhead is 23x to 38x less than prior work.

ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation through grants CCF-#1452904 and CCF-#1725543, by
the Semiconductor Research Corporation, and by a Google
Faculty Research Award.

REFERENCES

[1] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA), 2004.

[2] P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7,” ARM, Tech. Rep., 2011.

[3] A. Venkat and D. M. Tullsen, “Harnessing ISA diversity: design of
a heterogeneous-ISA chip multiprocessor,” in Proceedings of the 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), 2014.

[4] A. Venkat, H. Basavaraj, and D. M. Tullsen, “Composite-ISA cores:
enabling multi-ISA heterogeneity using a single ISA,” in Proceedings
of the 2019 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA), 2019.

[5] Marvell. LiquidIO II Smart NICs. Accessed: April 16, 2020.
[Online]. Available: https://www.marvell.com/ethernet-adapters-and-
controllers/liquidio-smart-nics/

[6] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: a frame-
work for near-data processing of big data workloads,” in Proceedings of
the 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016.

[7] Xilinx. Xilinx Zynq UltraScale+ MPSoC. Accessed: April 16,
2020. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html

[8] Intel. Intel SoC FPGAs. Accessed: April 16, 2020.
[Online]. Available: https://www.intel.com/content/www/us/en/products/
programmable/soc.html

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os
architecture for scalable multicore systems,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP),
2009.

[10] F. X. Lin, Z. Wang, and L. Zhong, “K2: a mobile operating system
for heterogeneous coherence domains,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[11] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration in
a heterogeneous-ISA chip multiprocessor,” in Proceedings of the 17th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[12] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno, H.-R.
Chuang, V. Legout, and B. Ravindran, “Breaking the boundaries
in heterogeneous-ISA datacenters,” in Proceedings of the 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[13] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran,
C. Kendir, A. Murray, and B. Ravindran, “Popcorn: bridging the
programmability gap in heterogeneous-ISA platforms,” in Proceedings
of the 10th European Conference on Computer Systems (EuroSys), 2015.

[14] OpenCAPI Consortium. (2016) OpenCAPI overview. Accessed: April
16, 2020. [Online]. Available: https://opencapi.org/wp-content/uploads/
2016/09/OpenCAPI-Overview.10.14.16.pdf

[15] The Gen-Z Consortium. Gen-Z technology. Accessed: April 16,
2020. [Online]. Available: https://genzconsortium.org/about-us/gen-z-
technology/

[16] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA),
2013.

[17] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann,
P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan, “SpaceJMP:
programming with multiple virtual address spaces,” in Proceedings of
the 21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2016.

[18] Apple Inc. (2006) Universal binary programming guidelines.
[19] R. Gordon. FatELF: universal binaries for Linux. Accessed: April 16,

2020. [Online]. Available: http://icculus.org/fatelf
[20] CCIX Consortium. Cache coherent interconnect for accelerators

(CCIX). Accessed: April 16, 2020. [Online]. Available: http://www.
ccixconsortium.com

[21] Roa Logic. RV12 RISC-V processor. Accessed: April 16, 2020.
[Online]. Available: https://roalogic.com/portfolio/riscv-processor

[22] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” Cray Users Group (CUG), May 2010.

[23] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[24] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn,
“Operating system support for overlapping-ISA heterogeneous multi-
core architectures,” in Proceedings of the 16 International Symposium
on High-Performance Computer Architecture (HPCA), 2010.

[25] Intel. (2014) OpenCL 2.0 shared virtual memory overview. Accessed:
April 16, 2020. [Online]. Available: https://software.intel.com/en-
us/articles/opencl-20-shared-virtual-memory-overview

[26] M. Harris (NVIDIA). (2013) Unified memory in CUDA 6. Accessed:
April 16, 2020. [Online]. Available: https://devblogs.nvidia.com/unified-
memory-in-cuda-6/

[27] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on GPUs: designing memory management units for
CPU/GPUs with unified address spaces,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[28] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address trans-
lation for 100s of GPU lanes,” in Proceedings of the 2014 IEEE 20th
International Symposium on High-Performance Computer Architecture
(HPCA), 2014.

[29] S. Shahar, S. Bergman, and M. Silberstein, “ActivePointers: a case
for software address translation on GPUs,” in Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA), 2016.

[30] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address
translation for accelerator-centric architectures,” in Proceedings of the
2017 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2017.

[31] B. Pichai, L. Hsu, and A. Bhattacharjee, “Address translation for
throughput-oriented accelerators,” IEEE Micro, vol. 35, no. 3, 2015.

[32] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,
T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,
W.-m. Hwu, and N. S. Kim, “Application-transparent near-memory
processing architecture with memory channel network,” in Proceedings
of the 2018 51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2018.

