
1

Argus: an End-to-End Framework for
Accelerating CNNs on FPGAs

Yongming Shen, Student Member, IEEE, Tianchu Ji, Student Member, IEEE, Michael Ferdman, Senior
Member, IEEE, and Peter Milder, Senior Member, IEEE

Abstract—Advances in deep learning have led to the widespread use of convolutional neural networks (CNNs) for solving the most
challenging computer vision problems. However, the high computational intensity of CNNs is beyond the capability of general-purpose
CPUs, requiring specialized hardware acceleration. In particular, FPGAs have been shown effective for CNNs. Unfortunately, the
difficulty of manually implementing CNN accelerators for FPGAs limits their adoption.
We present Argus, an end-to-end framework for accelerating CNNs on FPGAs. The core of Argus is an accelerator generator that
translates high-level CNN descriptions into efficient multi-core accelerator designs. Argus explores an extensive design space, jointly
optimizing all aspects of the design for the target FPGA and generating multi-core accelerator designs that achieve near-perfect
dynamic arithmetic unit utilization. To minimize user effort, Argus includes a model parser for importing CNN models from popular
machine learning frameworks, and a software stack for running an FPGA-backed CNN inference microservice.

Index Terms—Convolutional Neural Network, FPGA, Hardware Accelerator.

F

1 INTRODUCTION

T HE machine learning revolution enabled by deep neural
networks has transformed the landscape of information tech-

nology in recent years. At the forefront of this are convolutional
neural networks (CNNs) [1], [2], [3], [4], deep learning networks
that are primarily used to solve computer vision challenges.

Unfortunately, the success of CNNs is accompanied by im-
mense computational costs. CPUs are neither fast nor efficient
enough for running modern CNNs. GPUs offer impressive per-
formance, but their power-hungry nature limits their deployment.
ASICs have the potential to achieve the best performance and
energy efficiency, but also have prohibitive development costs.
Moreover, given the pace at which CNNs have evolved in recent
years, ASIC development risks becoming obsolete before turning
profitable. In contrast to these options, FPGAs offer a unique
balance between performance, energy efficiency, and flexibility.

The main obstacle for using FPGAs to accelerate CNNs is the
effort required to develop RTL designs to run on an FPGA. The
majority of software developers and machine learning practitioners
do not have the expertise necessary to program an FPGA, a skill
set that takes years to acquire. Even for an experienced RTL
designer, implementing a high performance CNN accelerator on
an FPGA can take from months to more than a year. Moreover,
when the target CNN and/or FPGA changes, a major effort is
needed to port the RTL design to the new target. To address
this problem, we developed Argus, an end-to-end framework for
accelerating CNNs on FPGAs. The end goal of Argus is for users
with no RTL design knowledge to take advantage of FPGAs to
accelerate CNNs. The key challenge in achieving this goal is
the automatic generation of CNN accelerator RTL designs. For
this, Argus follows the Multi-CLP CNN optimization strategy [5]
and takes advantage of the Medusa memory interconnect [6] to
make sure that auto-generated RTL designs make optimized use
of an FPGA’s compute, on-chip storage, and off-chip bandwidth
resources.

Figure 1 presents the workflow of the Argus framework.
Argus includes a CNN model parser, an accelerator generator,

FPGA Board

Device Driver

CNN Inference
Microservice

ML Framework
CNN Model

CNN Model
Description

CNN Parameter
Data Files

CNN Accelerator
RTL

CNN Model
Parser

CNN
Accelerator
Generator

FPGA
Specification

Fig. 1. Overview of the Argus end-to-end CNN acceleration framework.

a Linux device driver, and a network-accessible CNN inference
microservice. The model parser takes a target CNN model from a
supported deep learning framework as input and produces a model
description for the accelerator generator. Additionally, the model
parser extracts model parameters (e.g., CNN filter weights) from
the target CNN model and packs them into data files for the FPGA
accelerator. The accelerator generator takes a CNN description and
target FPGA specification as inputs, and generates the RTL design
of a CNN accelerator as output. This is the core of the Argus
framework, as it is what enables Argus to shield users from the
complexity of RTL development, which is the key to a complete
end-to-end experience. The device driver and CNN inference
microservice constitute the software stack, which provides end-
user applications easy access to the FPGA-based auto-generated
CNN accelerator.

2 BACKGROUND

To establish common terminology and notation for the remainder
of this paper, we consider an image classification CNN (e.g., [1])

0272-1732 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2019.2930607, IEEE Micro

2

that passes images through a sequence of convolutional layers.
Each convolutional layer convolves input feature maps with filters
to produce output feature maps. The filters of a convolutional
layer contain weights that were previously learned using an
algorithm such as stochastic gradient descent. Non-linear layers,
which typically perform computations such as sub-sampling or
activation functions, interleave convolutional layers. In the end,
the network includes one or more fully-connected layers, each of
which performs dot-products across its entire input.

Listing 1 presents the pseudocode which computes a convolu-
tional layer. The shape of a convolutional layer is defined by the
number of input feature maps (N) and output feature maps (M),
the output feature map height (R) and width (C), the filter size
(K), and the convolution stride (S). A layer takes as input N input
feature maps of dimensions ((R−1)×S+K)× ((C−1)×S+K)
and convolves them with M sets of filters; by convolving one set
of N filters (N ×K ×K weights) with the input feature maps, one
of the M output feature maps is obtained. Each of the M output
feature maps is computed by repeating this process with each of
the M sets of filters. Although omitted from Listing 1 for clarity,
output feature maps are initialized with trained bias values.

2.1 FPGA-based CNN Acceleration

Among the many different options for accelerating CNNs, FPGAs
stand out due to their energy efficiency and flexibility. The flexi-
bility of FPGAs also naturally presents multiple different ways to
accelerate CNNs.

The traditional approach to use an FPGA is to manually
craft a specialized RTL design for a target CNN and FPGA
pair. The advantage of this approach is that the design can be
finely optimized for the target CNN and specific FPGA hardware.
However, creating an efficient RTL design for a CNN requires
advanced hardware design skills that most CNN end users do not
have. Moreover, even after making the significant investment in
time and effort to produce an RTL design, the result is extremely
inflexible. Supporting a different CNN or targeting a different
FPGA chip requires a major RTL redesign effort.

An alternative approach is to develop an ASIC-style RTL
design of a specialized programmable CNN accelerator and im-
plement it on an FPGA. Because the accelerator is programmable,
the RTL design need not be changed to execute different CNNs
on the same system. Although practical, this approach cannot take
advantage of the greatest strength of FPGAs, while paying all the
costs of FPGA implementation. Instead of being maximally effi-
cient from specializing for just one target CNN, the programmable
accelerator must accommodate a large variety of CNNs, incurring
performance and energy overheads. In some sense, the cost of
programmability is paid twice: once in the FPGA fabric and again
in the accelerator design. At the same time, compared to an ASIC
implementation, the FPGA implementation pays a price in clock
rate and compute density. Furthermore, the RTL design must still
be manually updated and optimized for every target FPGA chip.
Without such changes, either the accelerator design will not fit (if
the new FPGA target is smaller) or resources will be wasted and
performance sacrificed (if the new FPGA is larger).

Another potential approach relies on high-level synthesis
(HLS) tools to generate a specialized RTL design for a target
CNN and FPGA pair from a high-level specification (e.g., C++ or
OpenCL). With the help of HLS tools, the effort required to update
an RTL design as the target CNN and/or FPGA changes is smaller,

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] //output maps
W[M][N][K][K] //weights
for(m=0; m<M; m++)
for(n=0; n<N; n++)
for(r=0; r<R; r++)
for(c=0; c<C; c++)
for(i=0; i<K; i++)
for(j=0; j<K; j++)
wx=W[m][n][i][j]
ix=I[n][S*r+i][S*c+j]
O[m][r][c]+=wx*ix

Listing 1. Pseudocode of a convolutional layer.

and the process of modifying the code is more accessible to
end users. However, based on our experience with the currently
available HLS tools, achieving the performance of manually-
crafted RTL designs requires the user of the HLS tools to possess
a high level of hardware design knowledge, and the process still
consumes significant time and effort.

Noting the challenges and drawbacks of the above approaches,
we take a different approach for Argus. Our goal is to retain peak
efficiency of the resulting accelerators, provide rapid portability
across CNN models and FPGA chips, and remove the burden of
FPGA programming from the end user. We do this by developing
an accelerator generator, which takes a CNN model and FPGA
specification as its inputs and produces an accelerator RTL design
specialized for the given CNN and target FPGA. If the target
CNN and/or FPGA changes, the generator produces a new RTL
design, yielding a highly specialized implementation that matches
the performance of manually-crafted designs, without manual RTL
development or porting effort.

3 ARGUS OVERVIEW

Argus is an end-to-end framework for accelerating CNNs on
FPGAs, centered around a flexible CNN accelerator generator
(Figure 1). The accelerator generator is implemented using a
combination of Bluespec, C++, Python and Verilog. Section 4
highlights some of the key aspects of the accelerator generator
design.

To provide an end-to-end user experience, Argus includes a
model parser to import CNN models from the PyTorch deep
learning framework. Internally, Argus uses a framework-agnostic
CNN representation which can be easily extended to support
other deep learning frameworks. As part of processing the target
model description, Argus performs a sequence of transformations
such as merging batch normalization layers into the convolutional
layer weights and biases, grouping chains of operations (e.g.,
convolution, max pooling, summation, ReLU) into tasks that can
be assigned to a processing core in the accelerator, and rewriting
the filter weights and biases into a form usable by the generated
accelerator hardware.

To facilitate interaction with the CNN accelerators from a
high-end host server system over PCIe, Argus provides a stream-
lined Linux device driver compatible with the generated CNN
accelerators and a CNN inference microservice. Applications that
use the accelerator send CNN inputs to the inference microservice
and receive CNN outputs as replies. The inference microservice
interacts with clients using the ZeroMQ library, servicing client
requests over local IPC or over the network.

0272-1732 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2019.2930607, IEEE Micro

3

4 GENERATING FPGA CNN ACCELERATORS

The CNN accelerator generator forms the core of Argus. Inter-
nally, the accelerator generator includes a design optimizer and
a library of hand-crafted parameterized RTL components. The
optimizer uses the requirements and constraints of the target
CNN and FPGA platform to produce an accelerator RTL design
by mixing, matching, and parameterizing the available library
components.

To produce peak performance efficient designs, the accelerator
generator must take full advantage of all available FPGA compute
resources (DSP slices), usefully incorporating as many DSP slices
into the generated RTL design as possible; we refer to this as
static utilization. Just as critically, at run time, the proportion of
cycles during which DSP slices perform useful work must be
maximized; we refer to this as dynamic utilization. In addition
to the FPGA compute resources, the generator must optimize
the use of the on-chip storage capacity and off-chip memory
bandwidth to ensure that the system is not bottlenecked by off-chip
data transfer. Simultaneously achieving high static and dynamic
utilization requires Argus to explore a vast space of candidate
designs that integrate the latest developments in CNN hardware
acceleration.

4.1 Multi-CLP Optimizer
CNNs comprise multiple computation layers, whose inputs are
arrays of various dimensions. A traditional way to implement
a CNN in an RTL design is to build a single large processing
core, a convolutional layer processor (CLP), which executes the
CNN layers sequentially. Following this approach, an accelerator
generator can combine a CLP template and an optimizer to select
the CLP template parameters for the target CNN and FPGA
combination.

Critically, CLP parameters that are optimal for one layer are
often sub-optimal for the other layers of a CNN. As such, jointly
optimizing one CLP for all CNN layers leads to a dynamic
underutilization of the FPGA resources, giving up performance.
Figure 2 (top) illustrates this scenario. A Single-CLP (white box)
iteratively processes the three layers (blue boxes). The dimensions
of the CLP and the layers are represented by the size and shape of
the boxes. L1 is smaller than the CLP dimensions, resulting in low
dynamic utilization because some hardware remains unused when
computing this layer (Figure 2 (a)). The dimensions of L2 exactly
match the CLP and the layer is processed efficiently. However,
L3 dimensions exceed the CLP dimensions, requiring the CLP
to be used iteratively to compute different parts of L3 (first, its
top portion, then, its bottom portion), again underutilizing the
available hardware (Figure 2 (b)).

To avoid this problem, Argus uses the Multi-CLP methodol-
ogy [5]. A Multi-CLP design partitions FPGA resources among
multiple CLPs, which concurrently operate on images in a
pipelined fashion. We illustrate the operation of Multi-CLP in
Figure 2 (bottom), where the hardware resources are partitioned
among two smaller CLPs. The two CLPs are specialized and have
different dimensions; this allows CLP1 to work well for L1 and
L3, while the dimensions of CLP2 are compatible with L2. The
different CLP dimensions match the layer requirements, maxi-
mizing dynamic utilization, with Multi-CLP designs performing
the same amount of work in less time compared to Single-CLP
(Figure 2 (c)). Using multiple CLPs, with each CLP specialized
for a subset of layers instead of all the layers, a Multi-CLP design

Same hardware partitioned into parallel CLPs

(state of the art)

time

All hardware in one CLP
Idle Hardware
Actively Used

L1

L3

CNN layer
dimensions

L2

L2
L2

L2

L3

L2
L3

L1

L1
L3

L3

Si
n

gl
e-

C
LP

 d
o

n
e

(our approach)

M
u

lt
i-

C
LP

 d
o

n
e

CLP

CLP2

CLP1

(a) (b)

(c)

Fig. 2. Operation of convolutional layer processors (CLPs) on a three-
layer CNN. The Multi-CLP approach uses the same total hardware
resources as the Single-CLP. However, the Multi-CLP partitioned hard-
ware closely matches the CNN layers, minimizing idle hardware and
improving performance.

TABLE 1
Dynamic utilization of DSP slices in competing designs.

AlexNet [1] VGGNet-E [2] SqueezeNet [3] GoogLeNet [4]

485T (float)
Single-CLP 74.1% 96.8% 78.0% 81.9%
Multi-CLP 95.4% 97.5% 95.8% 96.9%

690T (float)
Single-CLP 65.4% 96.0% 76.4% 78.1%
Multi-CLP 99.0% 98.7% 96.7% 96.0%

485T (fixed)
Single-CLP 31.0% 89.7% 51.1% 50.2%
Multi-CLP 93.9% 97.3% 93.6% 93.8%

690T (fixed)
Single-CLP 23.7% 88.3% 42.0% 44.0%
Multi-CLP 90.6% 96.1% 93.1% 89.3%

outperforms a Single-CLP design when using the same FPGA
resources.

Table 1 compares the dynamic utilization of the DSP slices in
Single-CLP and Multi-CLP systems across 32 different designs,
spanning two target FPGAs (Xilinx Virtex-7 485T and 690T),
two data types (32-bit floating point and 16-bit fixed point), and
four target CNNs. All designs target an 80% static utilization
of the FPGAs (by providing the accelerator generator with the
corresponding budgets), as some FPGA resources must remain
unused to allow for timing closure when using FPGA place-and-
route tools. The results indicate that Multi-CLP designs achieve
better dynamic DSP slice utilization than Single-CLP designs in
all cases. The smallest improvement (1.01x) is observed when tar-
geting VGGNet-E because the layers of VGGNet-E have regular
dimensions, limiting opportunity for CLP specialization. The best
improvement (3.8x) is observed when targeting AlexNet because
the layers of AlexNet have significantly varying dimensions.
Overall, Table 1 shows that Multi-CLP adapts better to CNNs
with irregular layer dimensions.

Virtex-7 485T and 690T are representative of mid-sized
FPGAs. In data center environments, larger FPGAs are more
common. Figure 3 compares how well Single-CLP and Multi-CLP
designs scale as the size of the target FPGA increases (with DSP
slice budgets ranging from 100 to 10,000). For this experiment,

0272-1732 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2019.2930607, IEEE Micro

4

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

Th
ro
ug
hp

ut
	(I
m
ag
es
/s
)

DSP	Slices

V7
48
5T

V7
69
0T

VU
9P

VU
11
P

Multi-CLP

Single-CLP

Fig. 3. Throughput at 100MHz for AlexNet on Multi-CLP and Single-CLP
32-bit floating point designs as a function of available DSP slices.

all designs target AlexNet and use 32-bit floating point as the
data type. The x-axis shows the number of DSP slices used
for each configuration. Dashed vertical lines illustrate the total
number of DSP slices available on the Virtex-7 485T, Virtex-7
690T, Virtex UltraScale+ 9P, and Virtex UltraScale+ 11P FPGAs.
As the number of available DSP slices increases, the throughput
difference between the Single- and Multi-CLP designs grows.
For example, going from 2,240 to 9,600 DSP slices, the Multi-
CLP improvement over Single-CLP designs increases from 1.3x
to 3.3x.

The benefit of Multi-CLP over Single-CLP comes at the cost
of design optimization complexity, with the Multi-CLP design
space being orders of magnitude larger than the Single-CLP
design space. For Single-CLP, only the parameters of one CLP are
determined by the optimizer. For Multi-CLP, the optimizer must
generate candidate partitioning schemes that decide on the number
of CLPs, the distribution of layers among these CLPs, and the
fraction of FPGA resources to assign to each CLP. Then, for each
candidate partitioning, every CLP must go through the Single-CLP
optimization to determine the best CLP parameters for running
the layers assigned to it. Fortunately, a combination of dynamic
programming techniques and design space pruning heuristics bring
the optimization time for Multi-CLP to under an hour for even the
largest designs (ResNet50 [7] on Virtex UltraScale+ 9P).

4.2 Parameterized CLP Templates

The purpose of a CLP is to execute the convolutional layer
computation presented in Listing 1. To leverage the parallelism
within a convolutional layer and take advantage of the on-chip
buffers to reduce off-chip data transfer, the Argus CLP template
uses a computation and data transfer schedule based on the work
of Zhang et al. [8], which applies loop reordering, tiling, and
unrolling to yield the pseudocode shown in Listing 2, pictorially
depicted in Figure 4.

In this CLP design, the Ibu f , Obu f , and Wbu f arrays cor-
respond to on-chip buffers for input, output, and weight data,
respectively. Copying data in or out of these arrays corresponds
to transferring data between the on-chip buffers and the off-chip
memory. Double-buffering is used to overlap data transfer with
computation. The R, C, M, and N loops are tiled with factors
Tr, Tc, Tm, and Tn, respectively. These loop tiling factors, which
are determined by the optimizer, control the amount of data
transferred per buffer refill or write-out, and the order in which the
data are transferred. The inner-most two loops are unrolled (based

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] //output maps
W[M][N][K][K] //weights
Ibuf[Tn][(Tr-1)*S+K][(Tc-1)*S+K]
Obuf[Tm][Tr][Tc]
Wbuf[Tm][Tn][K][K]
for(r=0; r<R; r+=Tr)
for(c=0; c<C; c+=Tc)
for(m=0; m<M; m+=Tm) {
for(n=0; n<N; n+=Tn) {
irx=r*S:(r+Tr-1)*S+K
icx=c*S:(c+Tc-1)*S+K
Ibuf=I[n:n+Tn][irx][icx]
Wbuf=W[m:m+Tm][n:n+Tn]
for(i=0; i<K; i++)
for(j=0; j<K; j++)
for(tr=0; tr+r<min(R,r+Tr); tr++)
for(tc=0; tc+c<min(C,c+Tc); tc++)
for(tm=0; tm<Tm; tm++) #UNROLL
for(tn=0; tn<Tn; tn++) #UNROLL
wx=Wbuf[tm][tn][i][j]
ix=Ibuf[tn][S*tr+i][S*tc+j]
Obuf[tm][tr][tc]+=wx*ix

}
O[m:m+Tm][r:r+Tr][c:c+Tc]=Obuf
}

Listing 2. Pseudocode for loop tiling in a CLP.

vector dot
product

output
bufferinput

buffer

input
buffer

input
buffer...T n i

np
ut

s
Tn words

output
buffer

output
buffer

...

T
m outputs

weights

weights

weights

...

1 word

1 word

+

+

+

vector dot
product

vector dot
product

Fig. 4. Diagram of a CLP datapath. Each dot-product unit takes Tn inputs
and Tn weights and produces one output.

on Tm and Tn), which represents Tm vector dot-product units, each
of width Tn, and each followed by an accumulator.

In addition to the convolutional layers, a CLP also needs
to process a variety of other types of layers. For state-of-the-
art CNNs, these include fully-connected layers, max-pooling lay-
ers, summation layers, batch normalization layers, and activation
(ReLU) layers. Supporting fully-connected layers does not require
hardware changes because a fully-connected layer can be seen as
a special case of a convolutional layer (R = C = K = 1). Batch
normalization layers can also be supported without hardware
changes, because, for inference, a batch normalization layer can be
absorbed into its adjacent convolutional layer. A ReLU activation
layer changes negative numbers to zeros, which is trivially im-
plemented as part of transferring results from the on-chip output
buffers to off-chip memory. When max-pooling and summation
layers occur in a CNN, they always follow convolutional layers.
Correspondingly, Argus supports both with small hardware units
placed adjacent to the CLPs. The Tm CLP output buffers in
Figure 4 are connected directly to Tm comparators; the comparator
results go to Tm adders, which write into the max-pooling or
summation output buffers. Tm additional buffers are included for
the summation layers to provide input data. Fusing convolutional

5

layers with max-pooling and summation layers eliminates the off-
chip data transfer of the intermediate data.

One noteworthy feature of Argus is that the Multi-CLP opti-
mization method does not dictate the design of the CLP template
used. Additional CLP templates can be incorporated into Argus,
selecting the best design based on the characteristics of the target
CNN. For example, if the target CNN is bottlenecked by off-
chip data transfer, a CLP template like Escher [9] can be used.
In Listing 2, the output buffer represented by Obu f is partitioned
into Tm banks, where each bank holds data for one output channel.
Escher generalizes this to let each output buffer bank hold data for
more than one output channel. The data in the input buffers are
reused to compute more output channels before being replaced,
reducing the input re-transfers from off-chip memory. Escher
buffer management also includes support for batch processing,
which further reduces the bandwidth of off-chip weight transfer.
Given these additional degrees of freedom in buffer use, Escher
can reduce the peak off-chip bandwidth requirements of a CLP by
10.5× for some CNNs.

Moreover, Argus can simultaneously incorporate multiple CLP
templates in a Multi-CLP design. For example, early convolutional
layers of a CNN generate far more intermediate data than later
layers. For CLPs responsible for the early layers, more sophisti-
cated CLP designs such as layer fusion [10] can reduce off-chip
intermediate data transfer. Due to the all-to-all connection among
the input and output channels within the convolutional layers,
naı̈vely chaining multiple convolutional layers together would be
impractical, as it would require all intermediate data to fit on-chip.
Instead, layer fusion considers a stack of convolutional layers to
be a single nested loop and applies loop transformations to reorder
the computation and data transfer, drastically reducing the on-chip
storage requirements, while entirely eliminating the off-chip data
transfer of intermediate data.

4.3 Medusa Memory Interconnect
In addition to generating the CLPs, Argus must generate the in-
terconnect between the CLPs and off-chip memory. For maximum
efficiency in the allocation of memory bandwidth to each CLP
and for flexibility in the choice of Tn and Tm for each CLP, Multi-
CLP designs require many independent ports of word-width size,
with each port delivering data to one or more CLP input buffers,
or draining data from one or more CLP output buffers. However,
because FPGA clock frequencies are lower than the frequency of
modern high-speed memory channels, FPGA memory controllers
use a wide bus to expose the full DRAM bandwidth to the FPGA
logic (e.g., a 12.8 GB/s DDR3 channel is connected with a 512-
bit 200MHz bus). As a result, the CNN accelerator interconnect
must efficiently multiplex a wide memory channel across many
independent narrow CLP ports, where the aggregate bandwidth of
the narrow ports equals the available off-chip memory bandwidth.

Using a conventional approach, the FPGA memory intercon-
nect alone can account for more than 20% of the LUTs and
FFs of the entire accelerator. Worse yet, the interconnect dom-
inates the critical path, severely limiting the overall accelerator
clock frequency. To overcome these limitations, Argus includes
Medusa [6], a specialized on-chip network generator specifically
tailored for high-performance interconnection between the wide
off-chip memory interface of the FPGA and the large number of
narrow input, weight, and output ports of the CLPs.

The efficiency of Medusa comes from its unique data transfer
network design, illustrated in Figure 5. For memory reads, each

DRAM
Controller

BRAM
BRAM
BRAM

BRAM

16
16
16

16

Data
Rotation

Unit
(Barrel Shifter)

512

16 (P0)
16 (P1)
16 (P2)

16 (P31)

CNN
Accelerator

32 In Buf Banks 32 Out Bufs

Fig. 5. Medusa interconnect block diagram.

512-bit word from the DRAM controller is destined to one of the
32 narrow ports. Medusa buffers data from the DRAM controller
in an input buffer which has the same width as the DRAM
controller interface. The input buffer is divided into banks, with
one bank per narrow output port. Each data word destined to a
given output port is spread across all input buffer banks. On the
output side, Medusa contains as many output buffers as the number
of narrow ports, with each output buffer feeding data to one of the
narrow CLP ports. Using a data rotation unit, Medusa transposes
the data in transit from the input buffer to the output buffers. In
this way, the data destined for an output port and spread across
all the input buffer banks all ends up, in the correct order, in the
output buffer of the destination port.

Because all the buffers in Medusa are deep and narrow,
they are efficiently implemented with BRAMs. The data rotation
unit is implemented using a barrel shifter, which is resource
efficient and scalable. For an example Argus CNN accelerator,
Medusa multiplexes a 512-bit DRAM controller interface across
32 16-bit read ports and 32 16-bit write ports using 4.7x fewer
LUTs and 6.0x fewer FFs than traditional interconnects, while
improving clock frequency by 1.8x. For a similar accelerator with
a 1024-bit DRAM controller interface, Medusa runs at 225MHz,
while routing congestion limits a traditional interconnect to under
25MHz.

5 CONCLUSIONS

Although FPGAs are an excellent fit for accelerating CNNs from
the performance and energy efficiency perspectives, their use is
limited by the difficulty of FPGA programming. To address this
problem, we developed Argus, and end-to-end framework for
accelerating CNNs on FPGAs. The core of Argus is an accelerator
generator which takes a CNN model and FPGA specification as
inputs and produces highly optimized CNN accelerator RTL de-
signs. For a complete end-to-end user experience, Argus includes
a model parser to accept CNN models from popular deep learning
frameworks, a Linux device driver for controlling the FPGA CNN
accelerator, and a microservice server for handling CNN inference
requests. The Argus accelerator generator leverages the Multi-
CLP [5] methodology to achieve both high static and dynamic
utilization of FPGA compute resources. The modular design of the
system enables incorporating advanced CLP designs such as Es-
cher [9] and layer fusion [10] for some or all of the CLPs. To meet
the memory access demands of the resulting high-performance
accelerators, Argus includes the specialized Medusa [6] memory
interconnect that efficiently multiplexes the wide FPGA memory
interface to many narrow independent memory ports. By combin-
ing these techniques in an automated system, Argus enables users
to efficiently run CNNs on FPGAs without the complexity of RTL
development.

0272-1732 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2019.2930607, IEEE Micro

6

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems, ser.
NIPS ’12. Red Hook, NY, USA: Curran Associates Inc., 2012, pp.
1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[3] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size,” CoRR, vol. abs/1602.07360, 2016.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition, ser. CVPR ’15, June 2015, pp. 1–9.

[5] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator
efficiency through resource partitioning,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture, ser. ISCA
’17, 2017, pp. 535–547.

[6] Y. Shen, T. Ji, M. Ferdman, and P. Milder, “Medusa: A scalable memory
interconnect for many-port DNN accelerators and wide DRAM controller
interfaces,” in 28th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2018.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 23rd ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY, USA:
ACM, 2015, pp. 161–170.

[9] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN accelerator with
flexible buffering to minimize off-chip transfer,” in Proceedings of the
25th IEEE International Symposium on Field-Programmable Custom
Computing Machines, ser. FCCM ’17. Los Alamitos, CA, USA: IEEE
Computer Society, 2017.

[10] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn ac-
celerators,” in Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’16. Washington, DC,
USA: IEEE Computer Society, Oct 2016, pp. 1–12.

