
Runtime-Programmable Pipelines
for Model Checkers on FPGAs

Mrunal Patel
Stony Brook University

mkpatel@cs.stonybrook.edu

Shenghsun Cho
Stony Brook University

shencho@cs.stonybrook.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Peter Milder
Stony Brook University

peter.milder@stonybrook.edu

Abstract—Software verification is an important stage of the
software development process, particularly for mission-critical
systems. As the traditional methodology of using unit tests falls
short of verifying complex software, developers are increasingly
relying on formal verification methods, such as explicit state
model checking, to automatically verify that the software func-
tions properly. However, due to the ever-increasing complexity
of software designs, model checking cannot be performed in a
reasonable amount of time when running on general-purpose
cores, leading to the exploration of hardware-accelerated model
checking. FPGAs have been demonstrated as a promising ac-
celerator because of their high throughput, inherent parallelism,
and flexibility. Unfortunately, the “FPGA programmability wall,”
particularly the long synthesis and place-and-route times, block
the general adoption of FPGAs for model checking.

To address this problem, we designed a runtime-programmable
pipeline specifically for model checkers on FPGAs to minimize the
“preparation time” before a model can be checked. Our runtime-
programmable pipeline design of the successor state generator
and the state validator modules enables FPGA acceleration of
model checking without incurring the time-consuming FPGA
implementation stages. Our experimental results show that the
runtime-programmable pipeline reduces the preparation time
before checking a new or modified model from multiple hours
to less than a minute while maintaining similar throughput as
FPGA model checkers with model-specific pipelines.

I. INTRODUCTION

The complexity of software systems has been growing
for decades with no sign of slowing down. It has become
challenging to verify and test systems because it is difficult,
if not impossible, for the traditional unit-test methodology to
yield full coverage of large, complex, and multi-threaded soft-
ware. Software developers are increasingly turning to formal
verification methods, such as explicit state model checking,
to test and check all states that a given software can reach.
Explicit state model checkers automatically generate the state
transition graph of the software and check all reachable states
exhaustively, making sure no violating state (i.e., no assertion)
is reachable. Verification is especially important for mission-
critical systems, including systems such as anti-lock braking
systems in automobiles, fly-by-wire aircraft, and shut-down
systems at nuclear power plants [1].

Unfortunately, the model checkers themselves are facing
performance challenges due to the massive number of reach-
able states that they must explore. Moreover, general-purpose
CPU cores that run model checkers do not efficiently handle
the computationally-heavy model checking tasks, such as

successor state generation and hashing, leading to extremely
long execution times.

The poor performance of model checkers on general-
purpose cores has led to the exploration of hardware-
accelerated model checking. FPGAs have demonstrated im-
pressive performance on model checking because of their
flexibility, high-degree of parallelism, and a rich set of on-
chip resources such as Block RAMs, which together can be
used for building model-specific pipelines that achieve high
throughput [2], [3]. However, when demonstrating hundreds-
times speedup over model checking software, these FPGA im-
plementations do not account for the “FPGA Programmability
Wall.” In particular, long FPGA compilation times (i.e., syn-
thesis and place-and-route) can take hours before an FPGA-
based model checker can start execution. Changes to the model
being evaluated must go through this time-consuming process,
diminishing the benefits of using FPGAs and making other
accelerators, such as GPUs, more attractive [4], [5], [6], [7],
[8], [9], despite being an order of magnitude slower than
FPGAs on this task.

We observe that the pipelines for the successor state gener-
ator and the state validator, the two components that change
between models, can be executed on a simple programmable
datapath without sacrificing the overall performance and effi-
ciency of an FPGA model checker. A programmable pipeline
would allow FPGA model checkers to be more flexible and
applicable to a wide array of models.

In this work, we design an efficient instruction-driven
runtime-programmable pipeline for model checkers. This
pipeline replaces the model-specific pipeline found in prior
works that hardwire the target model in FPGA logic. The result
is a model checker on FPGAs that achieves high throughput
model checking without requiring synthesis and place-and-
route on every model change.

Using our model checking platform, we demonstrate the
ability of our programmable pipeline to execute the BEnch-
marks for Explicit Model Checkers (BEEM) [10]. Experimen-
tal results show that our programmable pipeline can reduce the
“preparation time” from several hours, required by the model
checkers with model-specific pipelines, to less than a minute,
while incurring an average resource utilization and execution
time overhead of only 26%.



State 
Queue

Successor
State

Generator
State

Validator
Visited 
State

Checker
log
violating
state

drop
visited
state

Fig. 1: Explicit state model checking processing flow. Gray
boxes are model-dependent.

II. BACKGROUND AND MOTIVATION

A. Explicit State Model Checking

Model checking is a formal verification methodology that
aims to verify the correctness of software by confirming that
all of its reachable states meet the safety properties (no state
violates the specification) and the software as-a-whole meets
the liveness properties (eventually reaches a desired state). In
this paper, we focus on checking the safety properties using
one of the model checking variants called explicit state model
checking, which maintains complete state information, such as
software variables and program counters, in state bit-vectors.

Explicit state model checking confirms safety proprieties by
generating the state transition graph on the fly and traversing
and checking each of the states represented by the state
vectors. Figure 1 shows the flow of explicit state model
checking. The two gray blocks, Successor State Generator
and State Validator, are model-specific. Based on the software
model, the successor state generator takes a state as input
and generates all of that state’s possible successor states as
output. The successor states dictated by the model include
not only those states arising from software control flow and
varying user inputs, but also from system-level effects such
as thread scheduling in multi-threaded software. The newly-
generated states are passed to the model-specific state validator
to check if any of them violate the specification. If any
violating states are discovered, the model checker logs them
for further investigation. The states are then passed to the
Visited State Checker, which uses a hash table to check if the
new states have been visited previously by the model checker.
States that were previously visited are dropped to avoid an
infinite loop in the model checker, while previously unseen
states are placed into a State Queue, to be consumed by the
successor state generator. The model checking loop continues
until the state queue becomes empty.

B. State Space Exploration

We use an example software model written in Promela, the
PROcess MEta LAnguage, to further explain how explicit state
model checkers explore the model state space. Promela is the
modeling language used by SPIN, a widely adopted explicit
state model checker, to describe concurrent systems such
as multi-threaded software that communicate through global
variables or message-passing. Using tools such as Modex [11],
Promela models can be automatically extracted from software
source code.

Listing 1: Simple Promela example.
byte balance=1;
active [2] proctype customer() {
byte cash=0;
S: if :: goto W;

:: goto end;
fi;
W: if :: d_step { balance=balance-1;

cash=cash+1; };
goto end;

fi
end:

}
active proctype safety() {

(balance<0) -> printf("error");
}

balance
Proc 1

PC

Global
Variable

Local Variable

Proc 1 Variables

NUMPROC
Proc 1
cash

Proc 2
PC

Proc 2 Variables

Proc 2
cash

Fig. 2: State vector for the simple Promela example.

Listing 1 shows the Promela example model for a banking
application. Two customers (processes) are concurrently ac-
cessing the same account. The two processes, represented by
their own PIDs, can both read and modify the global variable
balance, while each process has its own local variable cash,
which is not accessible to the other process. In the start state S,
each process may decide (a non-deterministic, random choice
between the possibilities, represented as ND) to withdraw
money from the account (go to W) or to do nothing (go to
end). If a process decides to make a withdrawal, it goes into
the withdraw state W, where the process decreases the global
balance and increases its cash on hand, and then proceeds to
the end state. The example also defines the initial values of
the balance and cash variables, and a safety propriety that the
global balance should never be negative.

Figure 2 shows the structure of the state vector for the
example model. This type of model checking is called “ex-
plicit state” because the state vector contains all unabstracted
information of the software state. The local variable PC
represents the current state in the process state machine. A
global constant NUMPROC indicates how many processes run
concurrently, which is two in our example. The model checker
will iterate over every combination of the process execution
order and non-deterministic choices to create and check the
transition graph of all reachable states, known as the state
space.

Figure 3 shows the state space of this example with one state
marked as “violating” because it violates the safety property
(the balance becomes negative). The successor state generator
described in Section II-A generates the state space on-the-fly
by using the flow in Figure 1 and the state validator logs any
discovered violating states.



1,S,0,S,0

1,W,0,S,0 1,E,0,S,0 1,S,0,W,0 1,S,0,E,0

0,E,1,S,0 1,W,0,W,0 1,W,0,E,0 1,E,0,W,0 1,E,0,E,0 0,S,0,E,1

0,E,1,W,0 0,E,1,E,0 0,S,0,E,1 0,E,0,E,1

-1,E,1,E,1 
(violating) 

start state

Fig. 3: State space generated from the Promela example.

C. FPGA Accelerated Model Checking

As the complexity of software keeps growing, the reachable
state space of today’s software can easily contain hundreds
of millions or billions of states. At this scale, software-based
model checkers are bottlenecked by the general-purpose CPU
due to compute-bound operations such as the successor state
generation, state validation, and visited state checking. Each
state must go through all these operations, which can each
take several microseconds. Considering that models can have
tens of billions of states, the model checking task can take
days or even weeks to finish [3], which is unacceptably long
for the software development flow.

Software and hardware based solutions have been pro-
posed to overcome this problem. Software solutions focus
on improving the algorithms for traversing the state spaces,
in particular, using multicore and distributed systems. For
example, Swarm verification [12] divides the state exploration
into many small and independent verification tasks (VTs) by
explicitly limiting each VT’s memory footprint. By utilizing
different hash function seeds and traversal algorithms, each
VT explores a tiny, but different, fraction of the entire state
space. Because all VTs are independent of each other, Swarm
verification can run many VTs in parallel within a cloud
environment to realize an order of magnitude speedup [12].
However, the overall throughput of software model checking
remains fundamentally limited by the performance of the
general-purpose CPU cores, preventing Swarm from achieving
higher throughput without drastically increasing the costs of
using more servers in the cloud.

The insufficient performance of general-purpose cores on
the compute-intensive model checking tasks has inspired the
exploration of hardware accelerated model checking. Many
studies use GPUs to conduct model checking tasks because
of their massive parallel computation capability. However,
because the compute units and memory systems of GPUs are
not designed for model checking, model checkers on GPUs
achieve only moderate improvements over general-purpose
cores. On the other hand, FPGAs have been adopted for model
checking and shown to have promising performance because
of their flexibility, high parallelism, and massive on-chip
memory bandwidth [2], [3]. FPGA model checkers exhibit
up to three-orders-of-magnitude speedup over software based
verification, making FPGA accelerated model checking an
attractive approach for overcoming the performance limitations
of general-purpose cores.

D. Motivation for Programmable FPGA Swarm Verification

Although model checkers on FPGAs achieve promising
performance for the “execution” part of the model checking
tasks, the “preparation” time before the tasks can start running
is a strong deterrent against using FPGAs in mainstream
model checking. For example, FPGASwarm [3] advocates
using model extractors to translate a model into synthesizable
C or SystemC, then using HLS tools to generate RTL. This
approach avoids the difficulty of writing software models
manually in RTL and saves development time. However, the
generated RTL must go through the time-consuming FPGA
compilation (synthesis and place-and-route) process. Because
FPGASwarm requires high FPGA resource utilization to max-
imize parallelism and throughput, the FPGA compilation can
take more than an hour for a medium size FPGA, and
many hours for large FPGAs, such as the ones available
from the public cloud providers. Even worse, because of the
high resource utilization target, place-and-route is unlikely to
achieve timing closure on the first attempt, and the user may
be forced to repeat the process multiple times.

When the long compilation time of the preparation process
is considered, the usefulness of model checkers on FPGAs
is drastically reduced, as the end-to-end turnaround time of
checking a new model is no longer competitive. Modification
of the model, which happens when the software developers
make changes to the software being checked, requires gener-
ating new RTL. As a result, the amount of time saved by the
accelerator is shifted from execution to the preparation phase.

To make FPGA accelerated model checking practical, an
FPGA model checker must be (1) fast in execution time and
(2) fast in preparation time. For (1), we adopt the FPGASwarm
verification methodology from [3]. Then, as we will describe
in Section III, we achieve (2) by developing an instruction-
driven runtime-programmable pipeline for the successor state
generator and the state validator, which support checking
different models without RTL changes.

III. ARCHITECTURE AND IMPLEMENTATION

The goal of our runtime-programmable model checker on
FPGAs is to be compatible with a wide range of Promela
models without RTL design changes, while maintaining high
throughput. Recognizing that the successor state generation
and state validation are the most significant components that
change from model to model, we designed an interlock-free
pipeline specifically for these operations. Our design also
allows loading necessary parameters for different models,
including initial state vector, number of processes, and the
maximum value for ND, i.e. maximum number of non-
deterministic choices to be made in any single state that need
to be tested for the given model.

A. Programmable Pipeline Design Considerations

The programmable pipeline must have high throughput,
handling one state per cycle to match the model-specific
systems. To achieve such high throughput, each pipeline must
have access to its own BRAMs containing a copy of the



...

ALU

Var.

Stage R
egister

Load
ALU

State FIFO

Inst.

Inst.

Inst.

ALU ALU

Stage R
egister

ALU

Successor State

PID
NP

PID
ND

Input State

PC
Temp

1
0

Const.

VAR
SEL
VAR
SEL
VAR
SEL

STORE

STORE

STORE

PC
UPDATE

Inst.
Mem

...

...

...

...

...

ALU ALU

...

...

Reg 0
Reg 1

Reg 11
SRC1
SRC2 OUT

NP
PID
1
0

Reg 0
Reg 1

Reg 11

(a) Programmable pipeline for the successor state generator

(b) ALU connection example

... ...

OUTSRC2 OP
05+SEL_W         5 4                       1

Arithmetic
Operations

OUTOP
0 5+SEL_W    6

BASE_SEL PID
5Load

Operation
PID=0: SRC1 as index, PID=1: PID as index

4                       1

(c) ALU control bits

Fig. 4: The runtime-programmable pipeline for the successor state generator. Registers are marked in gray boxes

instructions, ensuring that there is no interference with the
other pipelines running in parallel. Prior work [3] showed
that the overall throughput of the Swarm based FPGA model
checker is bounded by the BRAM capacity. This bound is
exacerbated by introducing the BRAM instruction storage
needed for programmability. Therefore, a key consideration
in the design is to minimize the footprint of the instruction
memory.

B. Programmable Pipeline for Successor State Generator

Figure 4(a) shows the programmable pipeline of the succes-
sor state generator, which includes the instruction fetch, vari-
able selection, multiple execute stages, a permutation stage,
and a final store stage. Each stage takes a different slice of
the instruction as its control bits.

Instruction Fetch. On each cycle, a state vector, along with
a PID and an ND value, will be pushed into the pipeline
to generate one successor state. The pipeline determines the
address of the instruction to execute by concatenating the
PID, ND and PC values. To obtain the PC value, the PID is
used to look up the corresponding PC in the state vector. The
instruction is fetched from the pipeline’s instruction memory
(implemented as a BRAM) and the instruction bits are sent
down the pipeline. Because only part of the state vector is
modified, but a full state vector must be produced, the entire
input state vector is also passed through the pipeline.

Variable Selection and Constants. The first slice of the
instruction bits is used to load values for the execute stages.
Variables are selected from the state vector with the address
encoded in the instruction, while constants are obtained from
the instruction slice as immediate values. The number of
variables and constants depends on the instruction format,
which is dictated by the model and overall configuration of
the pipeline. The pipeline must have enough variable selection
units and constants to support all of the instructions for a given
model. At a minimum, the pipeline must have one constant,
the “next PC,” corresponding to the possible next state of the
model. For each selection unit, log2 S-bits of the instruction
are used to select from among S variables in the state vector.

Pipeline Registers. The pipeline registers between the
variable selection stage and the final store stage have a

specific arrangement. For the first stage, there are M registers
containing values selected from the state vector, where M is
the number of value selection units, followed by N registers
containing immediate values from the instruction. After the
immediate values, there are several registers used for storing
temporary values between the multiple execution stages. For
each execution stage, if a register value is not modified by an
ALU, the value is passed onto the subsequent stage unaltered.

Execute Stages. Computation is performed by a series of
execute stages, each having several parallel ALUs. The number
of ALUs per stage and the number of stages in the pipeline
should be large enough to accommodate any of the target
models. In addition to the resource utilization of the ALUs,
the number of ALUs also impacts the instruction size, because
each ALU requires control bits from the instruction to dictate
its operation.

Figure 4(b) shows an example of the connection between an
ALU and the pipeline registers before and after it. Each ALU
has two operands and one output. To reduce the connectivity
complexity and the number of instruction control bits, the first
operand of each ALU is fixed, and only the second operand
is freely selected from the preceding stage registers and four
read-only constants: NUMPROC (marked as NP in Figure 4),
PID, value 1, and value 0. Each ALU output is restricted
to be stored in one of two possible locations, which also
reduces connectivity complexity without sacrificing the ability
to efficiently map Promela models to instructions.

Because the indexed load operations are relatively infre-
quent in practical models, there is no need for all ALUs to
support loads. We develop two ALU types: Normal ALUs and
Load ALUs. Normal ALUs only perform arithmetic operations
on the operands and output the result, while the Load ALUs
can perform arithmetic operations and also load values from
the state vector. The Load ALUs require connections to all
values of the state vector, requiring significantly more FPGA
resources compared to Normal ALUs. For this reason, we limit
the number of Load ALUs to at most 1 per execute stage.
The Load ALUs use a base address register (BAR) number
and an offset as inputs. The final index into the state vector
is calculated by adding the offset to the value read from the
appropriate BAR. These BARs are specific to the model being



TABLE I: ALU operations

OP Output OP Output OP Output OP Output

0000 + 0100 > 1000 == 1100 !SRC1
0001 − 0101 < 1001 ! = 1101 SRC2
0010 << 0110 >= 1010 & 1110 !SRC2
0011 >> 0111 <= 1011 | 1111 LOAD

processed and are loaded alongside the instructions for the
model.

Figure 4(c) illustrates the format of the control bits for
the ALU. There is a four-bit OP field that corresponds to
16 operations shown in Table I. The first 15 operations are
arithmetic operations, while the last one is the load operation
available only in the Load ALUs. For arithmetic operations,
the log2 R-bit SRC2 field (marked as SEL W in Figure 4(c)) is
used to select the second operand from R intermediate pipeline
register locations. For the load operation, a Load ALU uses
the 3-bit BASE SEL to select one base address register out of
eight that point to predefined locations in the state vector as
the base for the indexed addressing. The 1-bit PID field of
the load operation is used to indicate to the ALU whether it
should use the PID or the first operand as the address index.
For all ALU operations, the result is stored into one of the
two fixed registers in the following stage, based on the 1-bit
OUT field.

Permutation Stage. The permutation stage sets up appro-
priate registers for the store unit by moving the calculated
values from the execute stages to the correct location for the
store unit to use. The instruction for this stage is a sequence of
address groups, one for each store unit. Each address group
consists of 3 addresses, each of size log2 R-bits, describing
the location in the R intermediate pipeline registers.

Store Stage and PC Updating. The store stage comprises
several store units to update variables in the state vector,
forming the output successor state vector. Each store unit has
three inputs from the previous stage: condition, value, and
index. There are log2 S store control bits to indicate the base
location in the state vector with S variables. If the condition
is non-zero, the variable in the state vector with position base
+ index is replaced with value. A special PC updating unit
updates the PC for the given PID with the “next PC” constant
stored in the instruction, using the same condition as the first
store unit.

C. Programmable Pipeline for State Validator

The ALUs in the state validator pipeline are arranged sim-
ilarly to the successor state generator. However, the validator
pipeline is simpler. Since all state vectors require the same
validation checks, unlike the successor state generator, there
is no need for separate instructions for each PID-ND-PC
combination. As a result, the state validator pipeline does
not need instruction storage or fetch logic. The state validator
pipeline also does not need a store stage, as it never updates
the state vector. The one instruction for validating states is
loaded into the pipeline when a new model is programmed
into the system. The final output of the validator pipeline is

TABLE II: Benchmarks from the BEEM database.

Benchmark Pro
ces

ses

Stat
e Vec.

Size

Var.
Sel.

Units

Con
sta

nts

ALUs
Stor

e Units

In
st.

Size

Anderson.8 7 24 Bytes 2 2 2x3 3 131 bits
Bakery.8 5 28 Bytes 2 2 2x5 3 167 bits
Lamport.8 5 20 Bytes 2 2 2x3 2 114 bits
Leader Filters.7 6 32 Bytes 1 1 2x4 1 107 bits
Mcs.6 5 24 Bytes 2 2 1x1 2 64 bits
Peterson.7 5 28 Bytes 3 1 2x4 2 129 bits

Superset 7 32 Bytes 3 2 2x5 3 172 bits

a single value, selected from a register in the last execution
stage, which indicates whether or not the input state is a model
violation. The validator pipeline does not consume BRAMs as
it has no instruction memory footprint and, therefore, does not
affect the number of pipelines that can fit into a target FPGA.

D. Initialization and Parameterization

To be able to verify models with arbitrary initial state
vectors, the design needs to load the initialization data in
addition to the model’s instructions. Other parameters that
are critical for processing and correctly verifying a model,
namely, the number of processes and the maximum value of
ND, are also loaded upon initialization. Specific addresses
used to index into the state vector are loaded into the BARs
upon initialization.

IV. EVALUATION

We evaluated our programmable pipeline by embed-
ding it into FPGASwarm, the state-of-the-art FPGA model
checker [3]. Our evaluation studies the overhead of the pro-
grammable pipeline in terms of FPGA resource utilization and
performance when compared to model-specific pipelines.

A. Implementation

We implement the programmable successor state genera-
tor pipeline using SystemC and Xilinx Vivado HLS simi-
lar to FPGASwarm, targeting medium-size FPGAs (Virtex-
7) and projecting to large FPGAs (UltraScale+). The pro-
grammable pipeline replaces the model-specific successor state
generator pipeline of the FPGASwarm design. We modified
FPGASwarm [3] to eliminate the state validation pipelines as
the benchmarks in the BEEM database do not include violation
states. To compare the experiments directly with FPGASwarm,
we use a similar configuration (i.e., a 4K-deep state queue,
64KB visited state storage, and a 250MHz clock).

B. Methodology

The BEEM database comprises a large variety of model
checking problems. We selected a sample from the suitable
models available in the BEEM database as our benchmarks and
found that support for many Promela features is not required
for practical models. Most models can be implemented without
Promela channels or even 4-byte integers. Notably, we found
that some benchmarks use the expensive MOD operation for



TABLE III: Resource utilization and number of VT cores on Virtex-7 (actual) and UltraScale+ (projected) FPGAs.

Programmable Pipeline Model-Specific Pipeline

Benchmark LUTs FFs BRAMs Num. Cores LUTs FFs BRAMs Num. Cores Prep.
Vtx-7 US+ Vtx-7 US+ Time (m)

Anderson.8 274,286 (63%) 435,023 (50%) 1,302 (90%) 30 213 202,836 (47%) 360,583 (42%) 1,247 (85%) 34 240 137
Bakery.8 265,146 (61%) 383,062 (44%) 1,202 (82%) 25 179 182,216 (42%) 335,360 (39%) 1,217 (83%) 31 204 120
Lamport.8 273,764 (63%) 448,645 (52%) 1,281 (87%) 33 221 187,138 (43%) 393,595 (45%) 1,189 (81%) 37 245 126
Leader Filters.7 232,097 (54%) 370,423 (43%) 1,240 (84%) 25 185 168,776 (39%) 315,313 (36%) 1,227 (83%) 28 200 104
Mcs.6 255,897 (59%) 412,638 (48%) 1,252 (85%) 31 229 196,495 (45%) 342,937 (40%) 1,213 (83%) 34 240 183
Peterson.7 267,341 (62%) 441,781 (51%) 1,269 (86%) 27 183 186,615 (43%) 350,829 (40%) 1,217 (83%) 31 204 148

Superset 261,179 (60%) 382,669 (44%) 1,239 (84%) 24 178 - - - - - -

bounds checking, which we rewrite by replacing the MOD
operations with SUB (N−M ) followed by a conditional assign
of N −M instead of N if N >= M .

Table II shows the characteristics of the models we use
in our evaluation, as well as the minimum configuration
for our programmable pipeline to support the models. The
characteristics and configurations shown in the table include
(from left to right) the number of processes, the size of the
state vector in bytes, the number of variable selector units,
the ALU configuration (width and depth), the number of store
units, and the width of the instruction in bits. The Superset
row shows a configuration that can support all benchmarks.

To evaluate the performance of our design, we directly com-
pare with FPGASwarm [3] and report the relative differences.
The FPGASwarm approach fills the FPGA with VT cores
that each have a model-specific pipeline for their successor
state generator. We use the same organization for our designs,
but replace the model-specific pipelines with programmable
pipelines. Independent VT cores run independent VTs, making
the total execution time for a model proportional to the number
of VT cores that fit onto an FPGA. Specifically, the execution
time is the total number of VTs required to check the model
multiplied by the average run time per VT, and divided by the
number of VT cores that fit onto the FPGA. By replicating
the same model checker infrastructure as the prior work (the
same depth of the state queue and size of the visited state
storage) we ensure that the total number of VTs of the
model-specific pipeline and our programmable pipeline are
identical. Furthermore, because both systems have a one-state-
per-cycle pipeline throughput and the same FPGA chip and
clock frequency, the difference in the performance of these
two systems comes from the number of VT cores that fit on
the FPGA, which in turn is dictated by the BRAM usage of
the corresponding VT cores.

C. Overhead of Programmability
The goal of using programmable pipelines in the model

checker is to ensure that the VT cores can accommodate dif-
ferent models with different sizes and configurations without
RTL re-compilation. However, supporting programmability
requires over-provisioning the VT cores and using more than
the bare minimum of FPGA resources needed by the model-
specific pipelines. Higher resource usage of the VT cores with
programmable pipelines results in a reduction in the number
of VT cores that can fit onto the FPGA. We call this reduction

in the number of VT cores the overhead of programmability,
which directly translates to a reduction in performance as
described in Section IV-B.

Table III presents the post-P&R FPGA resource utiliza-
tion for our benchmarks and the Superset design, using
our programmable pipeline on a Xilinx Virtex-7 XC7V690T
FFG1761-3 FPGA. The BRAM utilization is the highest
among the FPGA resources, which corroborates the prior
work [3]. As expected, the logic (LUTs and FFs) utilization
is higher for the programmable pipeline. However, despite
the increased resource usage, logic remains under-utilized and
BRAM utilization remains the primary determinant of the
number of VT cores. Table III also projects the number of
VT cores that can fit onto a Xilinx UltraScale+ VU9P FPGA
with 90% of BRAM and UltraRAM utilization, showing that
the UltraScale+ FPGA can fit 6.5x to 7.5x more VT cores than
our target Virtex-7 FPGA.

Figure 5 presents the relative performance of the model
checker with the programmable pipeline compared to the
model-specific FPGASwarm system. The gray bars show the
normalized performance when using the runtime-configurable
Superset pipeline that supports all benchmarks. In the worst
case, the programmable model checker is 37% slower than the
model checker with model-specific pipelines, with an average
of 26% slowdown across all benchmarks. Lamport.8 has the
worst performance because it has the smallest state vector. The
small state vector allows for a larger number of VT cores with
model-specific pipelines to fit on the chip, resulting in higher
performance. On the other hand, Leader filter.7 has the same
state vector size as the Superset configuration, resulting in
only three VT cores difference (14%) compared to the model-
specific FPGASwarm pipelines, with the difference arising
solely due to the instruction memory BRAM usage of the
programmable pipelines.

Despite the runtime programmability resulting in up to 37%
slowdown, the overall benefit of using FPGAs for model
checking (yielding multiple orders of magnitude performance
improvement relative to CPUs and GPUs) remains significant.
Critically, despite the slowdown, the programmable pipeline
is a major advance for FPGA model checking, as it allows
using the system without paying the multi-hour preparation
time cost of the model-specific pipeline.



0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Superset Best Fit

Fig. 5: Overhead of programmability

D. Optimization with Best Fit Configurations

The efficiency of the programmable pipeline can be im-
proved by using a configuration of the pipeline that is tailored
more specifically for the model being checked. This idea
can be used to minimize the performance gap between the
programmable and model-specific pipelines. After we translate
a Promela model into programmable-pipeline instructions, we
know the minimum parameters the pipeline needs to run the
model (i.e., the size of the state vector, number of variables and
constants, depth and width of the pipeline, and number of store
units). We can create a library of pre-compiled programmable
model checkers for models with different parameters and
configuration requirements. To prevent the inefficiencies of
using a larger configuration to run a smaller model, we can
select the best-fitting model checker bitfile from the library
to minimize the amount of resources that are wasted. Such a
library will provide the ability for different groups of similarly
sized models to be tested quickly, as switching configurations
is as simple as installing a different bitstream.

The black bars in Figure 5 show the overhead of pro-
grammability when choosing the best-fitting checker for each
of our benchmarks. Compared to the model-specific pipeline,
the best-fit programmable pipeline only incurs the additional
cost of instruction memory, as the amount of BRAM used for
state queues and visited state storage is the same for both.
The models that have the smallest instructions will have the
best performance (Mcs.6) and larger instructions have worse
performance (Bakery.8).

The reduced overhead of the best-fit programmable
pipelines from a library compared to the Superset pipeline
is primarily attributed to the reduced state vector size (i.e.,
for each model, the programmable pipeline and model-specific
pipeline have the same state vector size) and partially to the re-
duced instruction width (i.e., best-fitting pipeline dimensions).
The Superset pipeline incurs a performance loss when the state
vector size is unnecessarily large for the given model, an effect
that is emphasized in the case of Lamport.8.

E. Preparation Time Comparison

Table III also shows the preparation time in minutes,
including using HLS to generate RTL code, FPGA synthe-
sis, and place-and-route for the model checker with model-
specific pipelines on the Virtex-7. The times were obtained

on a modern server with two Xeon E5-2620v3 CPUs and
64GB DDR4 RAM. The results clearly demonstrate why our
programmable pipeline is desired and why the model-specific
approach is not practical. While the model-specific designs
require 2 to 3 hours of preparation, our programmable FPGA
model checker only needs to download the bitstream and under
a second to transfer the programmable pipeline instructions to
the FPGA. For larger FPGAs, such as the UltraScale+, the
preparation time can reach 10 hours, making the sub-one-
minute preparation time of the programmable pipeline design
even more attractive.

V. RELATED WORK

Researchers have proposed using FPGAs to accelerate the
model checking process. [2] built a Murphi model checker
on an FPGA, showing 200x speedup over a software imple-
mentation using general-purpose cores for a relatively small
model. [3] implemented the Swarm verification methodology
using FPGAs, showing a 900x speedup over a software
Swarm implementation on a synthetic model with 4 billion
states. Although both of these FPGA model checkers report
impressive performance, they suffer from the long preparation
time which is not included in their runtime considerations,
and thus they do not support rapidly changing the models
being checked. Our instruction-driven runtime-programmable
pipeline for FPGA model checkers eliminates the prepara-
tion process for switching models while maintaining similar
speedups relative to software.

Although the speedup on GPGPU model checkers relative to
general-purpose CPUs are less than one order of magnitude,
they remain a popular accelerator choice for model check-
ing [4], [5], [6], [7], [8], [9]. This is primarily attributable
to the relatively easy-to-use programming model and fast
compilation time of GPGPUs compared to FPGAs. Our work
bridges this gap for FPGAs, enabling both rapid preparation
and high model checker throughput, yielding the most practical
solution to hardware-accelerated model checking to date.

VI. CONCLUSIONS

Software verification using explicit state model checking
with general-purpose cores is extremely time-consuming due
to the ever-increasing complexity of software designs. Al-
though model checkers on FPGAs have demonstrated signif-
icantly higher performance, the long FPGA RTL preparation
time required to set up the model checking operation hampers
the general adoption of FPGA accelerated model checking.

In this work, we presented instruction-driven runtime-
programmable pipelines for explicit state model checking on
FPGAs. Using our programmable pipelines in place of a
model-specific successor state generator and state validator,
model checkers on FPGAs can be made programmable and
eliminate the long preparation time. Our results indicate that
model checkers with our programmable pipelines reduce the
model preparation time from hours to less than a minute, with
only a small cost in runtime performance, making FPGAs
practical for hardware-accelerated model checking.



REFERENCES

[1] N. R. Storey, Safety Critical Computer Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1996.

[2] M. E. Fuess, M. Leeser, and T. Leonard, “An FPGA implementation of
explicit-state model checking,” in 2008 16th International Symposium
on Field-Programmable Custom Computing Machines, April 2008, pp.
119–126.

[3] S. Cho, M. Ferdman, and P. Milder, “FPGASwarm: High throughput
model checking on FPGAs,” in 2018 28th International Conference on
Field Programmable Logic and Applications (FPL), Aug 2018, pp. 435–
442.

[4] E. Bartocci, R. DeFrancisco, and S. A. Smolka, “Towards a GPGPU-
parallel SPIN model checker,” in Proceedings of the 2014 International
SPIN Symposium on Model Checking of Software, ser. SPIN 2014. New
York, NY, USA: ACM, 2014, pp. 87–96.

[5] D. Bošnački, S. Edelkamp, D. Sulewski, and A. Wijs, “Parallel prob-
abilistic model checking on general purpose graphics processors,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 13,
no. 1, pp. 21–35, Jan 2011.

[6] T. Field, P. G. Harrison, J. Bradley, and U. Harder, Eds., PRISM: Proba-
bilistic Symbolic Model Checker, ser. Computer Performance Evaluation:
Modelling Techniques and Tools. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002.

[7] S. Edelkamp and D. Sulewski, “Efficient explicit-state model checking
on general purpose graphics processors,” in Model Checking Software,
J. van de Pol and M. Weber, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 106–123.

[8] J. Barnat, L. Brim, and M. Ceska, “DiVinE-CUDA - A tool for GPU
accelerated LTL model checking,” in Proceedings 8th Intl. Workshop
on Parallel and Distributed Methods in verifiCation, PDMC 2009,
Eindhoven, The Netherlands, 4th November 2009., 2009, pp. 107–111.

[9] J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Employing multiple
CUDA devices to accelerate LTL model checking,” in 2010 IEEE 16th
International Conference on Parallel and Distributed Systems, Dec 2010,
pp. 259–266.

[10] R. Pelánek, “BEEM: Benchmarks for explicit model checkers,” in Model
Checking Software, D. Bošnački and S. Edelkamp, Eds., 2007.

[11] (2018) Modex - model extraction. [Online]. Available:
http://spinroot.com/modex/

[12] (2017) Swarm verification website. [Online]. Available:
http://spinroot.com/swarm/


