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Abstract—To cope with the increasing demand and computational
intensity of deep neural networks (DNNs), industry and academia
have turned to accelerator technologies. In particular, FPGAs
have been shown to provide a good balance between performance
and energy efficiency for accelerating DNNs. While significant
research has focused on how to build efficient layer processors, the
computational building blocks of DNN accelerators, relatively little
attention has been paid to the on-chip interconnects that sit between
the layer processors and the FPGA’s DRAM controller.

We observe a disparity between DNN accelerator interfaces, which
tend to comprise many narrow ports, and FPGA DRAM controller
interfaces, which tend to be wide buses. This mismatch causes
traditional interconnects to consume significant FPGA resources. To
address this problem, we designed Medusa: an optimized FPGA
memory interconnect which transposes data in the interconnect
fabric, tailoring the interconnect to the needs of DNN layer processors.
Compared to a traditional FPGA interconnect, our design can reduce
LUT and FF use by 4.7x and 6.0x, and improves frequency by 1.8x.

I. INTRODUCTION

Deep neural networks (DNNs) [1], [2] are used to solve challeng-
ing machine learning problems. However, CPUs are failing to meet
the high computational demand of DNNs. GPUs provide sufficient
performance, but are limited by their high power consumption. In
contrast, research has shown that FPGAs strike a good balance
between performance and energy efficiency for accelerating DNNs.

A DNN comprises a pipeline of computing layers (3D convolu-
tion, sub-sampling, nonlinear activation, etc.). Correspondingly, an
FPGA-based DNN accelerator comprises one or more layer proces-
sors, where each is specialized for computing one or more layers of
the target DNN [3], [4].For large DNNs, DRAM is needed to store
DNN parameters and layer inputs and outputs. Prior work has shown
that DNN computation is highly bandwidth intensive [5], [6]. It is
thus essential for the layer processors to fully utilize the available
DRAM bandwidth. However, there exists a mismatch between the
interface of an FPGA DRAM controller and the layer processors.
The nature of FPGAs tends to restrict the frequency of layer proces-
sors, which results in the DRAM controller using a wide interface to
expose the full DRAM bandwidth to the layer processors (512-bits
for a single DDR3 channel). On the other hand, many state-of-the-
art FPGA-based DNN accelerators [4], [5] assume the availability
of many narrow read and write ports (8 or 16 bits), each with inde-
pendent DRAM access. This is because narrow ports offer the most
flexibility in optimizing the layer processors for the target DNN [4].
As such, a memory interconnect must be used to multiplex the wide
DRAM controller interface to a large number of narrow read and
write ports, while maintaining maximum bandwidth efficiency.

A memory interconnect performs data transfer as well as request
arbitration. The challenge of multiplexing a wide DRAM controller
interface lies in data transfer, which will be our focus. Mainstream
designs of memory interconnects [7], [8] use a 1-to-N crossbar to
multiplex the wide DRAM controller interface to N narrower ports.
The crossbar needs to have the same width as the DRAM controller
to ensure that the memory bandwidth is fully utilized. Each of the
N endpoints of the crossbar must then connect to a FIFO to buffer
burst transfers and a data-width converter to present a narrow port
to the DNN accelerator. While straightforward, such designs are
severely over-provisioned: the wide crossbar allows the full DRAM
bandwidth to be directed to any narrow port on any cycle, but each
narrow port only uses a fraction of the full bandwidth. This excessive
flexibility of the interconnect consumes significant logic and wiring
resources that can otherwise be used by the DNN accelerator.

To overcome this over-provisioning, a memory interconnect
should be optimized to take advantage of the data transfer character-
istics of DNN layer processors. In this regard, we make two critical
observations. First, the narrow ports used by layer processors are all
of the same width, and are all expected to be able to supply one word
per cycle. This means that DRAM bandwidth should be statically
and evenly partitioned across the narrow ports. Second, a layer
processor knows its access pattern and can perform perfect prefetch
for future data access, which means that a moderate latency increase
in the memory interconnect will not affect system performance.

Based on our observations, we designed Medusa, a resource-
efficient, performant, and scalable memory interconnect. In our
design, the crossbar, FIFOs, and data-width converters are replaced
with a transposition unit. Within the transposition unit, a shifter re-
places the crossbar and data-width converters, resulting in significant
logic simplification. Moreover, instead of a shallow FIFO per port,
the transposition unit uses a deep shared buffer. This allows BRAMs
to be efficiently used for buffering, freeing up LUTs and wires for
other uses. Importantly, with only a minor constant latency increase,
Medusa guarantees the same data transfer characteristics as the tradi-
tional interconnects, and can be used as a drop-in replacement with-
out changing the layer processor or memory request arbiter design.

Compared to a traditional interconnect, Medusa multiplexes
a 512-bit DRAM controller interface across 32 16-bit read ports
and 32 16-bit write ports using 4.7x and 6.0x fewer LUTs and
FFs, while also improving frequency by 1.8x. For a 1024-bit
DRAM controller interface, Medusa runs at 225MHz, while routing
congestion limits traditional designs to under 25MHz.
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Fig. 1. The baseline memory read data transfer network.

II. TRADITIONAL MEMORY INTERCONNECTS

In this section, we present a baseline memory interconnect which
is representative of existing designs [7], [8], and we qualitatively
discuss its scalability challenges.

A. Baseline Data Transfer Logic

The baseline interconnect’s data transfer logic has two parts: one
for memory read, and the other for memory write.

1) Baseline Memory Read Data Transfer: Figure 1 shows the
baseline memory read data transfer network. In this example, 32
16-bit accelerator read ports share access to one 512-bit DRAM
controller interface. The design uses a 1-to-N demux to route input
data from the memory controller to N FIFOs, where each FIFO has
the same width as the memory interface. This means that the demux
can accept a new input from the memory controller on every cycle,
allowing the maximum memory bandwidth to be consumed. Each
FIFO is provisioned to be large enough to hold the largest burst
that a narrow read port can request, so that burst transfer to a single
narrow port does not create back pressure. The output of each FIFO
is connected to a data width converter, which converts data from
the memory interface width to the narrow read port width.

2) Baseline Memory Write Data Transfer: The baseline memory
write data transfer network is similar to the read data transfer net-
work, except the data words flow in the opposite direction. Each of
the N accelerator write ports feeds into a data width converter, then
into a FIFO. Each FIFO has the same width as the memory controller
and can hold the maximum burst from a port. On each cycle, an
N-to-1 mux chooses the output from one of the FIFOs to write to the
memory controller. By using FIFOs to accumulate complete bursts
of data, data from the same burst can be sent to the memory con-
troller using the full bandwidth of the memory controller interface.

B. Baseline Scalability Problems

Although the baseline presents a straightforward solution to allow
full DRAM bandwidth usage and to eliminate any data switching
conflicts among narrow memory ports, its wide demux and mux
are over-provisioned in terms of their connectivity. For example,
the demux used in the read network has the ability to direct all
of the read bandwidth to any of the read ports on any cycle. Such
flexibility is useful in applications where the partitioning of memory
bandwidth to read ports needs to change over time. However, in
the context of DNN accelerators, the memory read bandwidth is

expected to simply be evenly divided among all the read ports [4].
As such, the extra flexibility of the wide demux only incurs wasted
logic (the muxes of the data width converters) and wiring resources.
The write network incurs analogous resource waste.

Moreover, the combination of wide and shallow FIFOs leads to
inefficient use of FPGA resources. Implementing the shallow FIFOs
using BRAMs wastes BRAM capacity, while using LUTRAM
consumes a large amount of logic. Additionally, a large number
of buses (as wide as the DRAM controller interface) is widely
distributed within this design. Handling wide buses introduces
challenges with FPGA routing, greatly limiting the peak clock
frequency when scaling to wider memory interfaces.

III. MEDUSA: AN OPTIMIZED MEMORY INTERCONNECT

We propose a scalable high performance memory interconnect
which is based on data transposition. Figures 2a and 2b provide
a high-level overview of the interconnect. Both memory read and
write use two data buffers, a rotation unit, and control logic.

Our design evenly partitions the DRAM bandwidth to each port
of the DNN accelerator by transposing data instead of routing it with
wide demuxes and muxes, thus reducing FPGA resource and routing
complexity, without compromising DRAM bandwidth utilization.

A. Bandwidth Partitioning Through Transposition

Here we provide detailed descriptions of how transposition is
used for memory read and write.

1) Transposition for Memory Read: Figure 3 shows an
example of transposition for memory read. Each memory line
is Wline = 64 bits, each accelerator port is Wacc = 16 bits wide,
and N =Wline/Wacc =4 accelerator ports are used. We mark each
data word with coordinates (x,y), where x represents the word’s
destination accelerator port, and y is the word’s index within its
containing memory line. Words in the same memory line are always
destined to the same accelerator port, and are sent to the destination
port in increasing index order. Each Wline-bit memory line is stored
across the input buffer banks (seen at the bottom of the figure).
Specifically, words that are destined to accelerator port i are stored
in address i of each of the input buffer banks.

Transposition is performed by reading data words from the input
buffer, rotating them, and storing them in appropriate locations
in the output buffer. First, at cycle c, words along the diagonal
(0,c mod N) to (N−1,(c+N−1) mod N) are read. For example,
Figure 3a shows c= 0, where words (0,0),...,(3,3) are read, and
Figure 3b shows c=1, where words (0,1),...,(3,0) are read. The
rotation unit then takes these N words and rotates them to the left by
c mod N locations. For example, Figure 3c shows that during c=3,
the words are rotated 3 positions to the left. Lastly, the output buffer
stores the words into transposed locations: on cycle c, bank i will
store data into address (i+c) mod N. The transposition completes
in N cycles, after which each accelerator port can read from its
corresponding output buffer bank.

2) Transposition for Memory Write: Memory writes are
performed similarly, but with data flowing in the opposite direction.
Each accelerator port writes data words into its own bank of the
input buffer. The interconnect then transposes input buffer banks
to rows in the output buffer.



(a) Medusa’s memory read data transfer network

(b) Medusa’s memory write data transfer network

Fig. 2. High level view of the memory interconnect Medusa. Controller modules keeps track of data and space availability in buffers. Buffers next to the DNN accelerator
are double buffered. A line from the DRAM controller is 512-bit (Wline). Each port of the DNN accelerator is 16-bit wide (Wacc=16 bits).
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Fig. 3. A detailed transposition example for memory read.

For both memory read and write, the interconnect is capable
of processing one Wline-bit line per cycle, as all parts (the rotation
unit, input buffer read/write, output buffer read/write) operate on
Wline-bit data in parallel. Therefore the system can deliver the full
bandwidth of the DRAM controller interface to the accelerator
ports. Furthermore, the bandwidth is evenly partitioned across the
ports, matching the accelerator’s requirements.

B. Rotation Unit Design

The data rotation unit takes N values of Wacc bits each and left-
rotates them in increments of Wacc bits (rotating by Wacc×c bits in
cycle c). Figure 4 shows an example rotation unit with N=8 ports.
This unit, using a barrel shifter structure, passes data through log2(N)
levels of logic, where level ` is capable of rotating the word by the bit
length of 2` words. Stage ` is controlled by bit ` of the binary encod-

ing of the desired rotation amount, where logic-1 indicates that the
stage should rotate. Data rotation can either be performed in a single
cycle or be pipelined, depending on the frequency requirements.

Rotation 
Control 

bits

3

Inputs

Outputs

Fig. 4. An example data rotation unit for supporting eight ports.



C. Support for Burst Transfer

Support for burst data transfers is necessary to utilize the
bandwidth available from the DRAM controller.

1) Burst Transfer for Memory Read: A request can generate a
burst of line transfers to its port. Therefore, the input buffer must be
large enough to accommodate at least one burst per port. In other
words, the input buffer capacity must be at least MaxBurstLen×N,
with N being the number of ports. For each port, head and tail point-
ers are maintained to track its input buffer space. In each cycle, only
the lines at the head pointers participate in rotation. A head pointer
is incremented when the line it points to has finished transposition.
Tail pointers control where incoming memory lines are written.

2) Burst Transfer for Memory Write: The output buffer capacity
must be at least MaxBurstLen×N. Similar to the case of memory
read, head and tail pointers are used to keep track of the buffer
space for each port. Notably, for memory write, the request arbiter
must monitor data coming from the write ports, and only issue
requests for ports that have accumulated enough data in the output
buffer to finish the write request. This requirement also applies to
the baseline interconnect.

D. Interconnect Scalability

By replacing the baseline wide mux/demux and data-width
converters with rotation units, the Medusa interconnect significantly
reduces logic cost from Wline × (N − 1) 2-to-1 one-bit muxes
down to Wline×log2(N) [9]. Furthermore, the Medusa interconnect
consolidates the shallow and wide FIFOs of the baseline design into
large buffers with deep and narrow banks, making them amenable
to efficient storage in BRAM.

E. Latency Overhead

Compared to the baseline, our transposition-based design has
a constant latency overhead of Wline/Wacc cycles. This happens
because a memory line can only be consumed after it has been trans-
posed. For a typical case, Wline/Wacc=512/16=32. In the context
of DNN accelerators, this latency overhead has a negligible impact
on performance, because DNN layer processors double buffer their
inputs and perform perfect prefetch of data into the idle buffers.

Note that, even for burst transfers, the latency overhead of
Medusa is still Wline/Wacc cycles. This is because as soon as the
head of a burst arrives, transposition can start.

F. Data Transfer Characteristics

In the example in Figure 3, the buffer has data available for each
port at the time when the transposition begins. However, this is not
a requirement of the design. The control logic starts transposition
for a port without waiting for the other ports, and a port can join
the transposition when transfers on the other ports are already in
progress. In other words, the transposition design does not incur
any interference among ports.

Overall, except for the constant latency overhead explained
in Section III-E, the data transfer characteristics of the Medusa
interconnect are identical to that of the baseline.

TABLE I
MEDUSA VS. BASELINE (FPGA RESOURCE USE).

LUT FF BRAM-18K DSP

Read Network 18,168 19,210 0 0
(4.2%) (2.2%) (0%) (0%)

Baseline Write Network 26,810 35,451 0 0
(6.2%) (4.1%) (0%) (0%)

Total 198,887 240,449 726 2,048
(45.9%) (27.8%) (24.7%) (56.9%)

Read Network 4,733 4,759 32 0
(1.1%) (0.6%) (1.1%) (0%)

Medusa Write Network 4,777 4,325 32 0
(1.1%) (0.5%) (1.1%) (0%)

Total 156,409 195,158 790 2,048
(36.1%) (22.5%) (26.9%) (56.9%)

IV. EVALUATION

We compare the Medusa transposition-based interconnect and the
baseline interconnect by looking at their resource use, performance,
and scalability. Note that both interconnects use the same request
arbitration logic, hence our evaluation focuses on the data transfer
networks within the interconnects.

We used Bluespec to implement both interconnects. We perform
synthesis as well as place and route (P&R) using Xilinx Vivado
2016.4, targeting Virtex-7 690T. To ensure validity, we checked
that when multiplexing a 256-bit port to 16 16-bit ports, our
baseline implementation used fewer resources than an equivalent
implementation built with Xilinx IPs [9]. To get representative
results, when doing synthesis and P&R for an interconnect, a convo-
lutional layer processor [4] is added and connected to all the narrow
read/write ports. The configuration of the layer processor is suitable
for VGGNet [1]. To make it easy to experiment with different
design scales, we replaced the DRAM controller and PCIe controller
with stubs in our test designs. The exclusion of these components
gives equal benefit to the baseline and transposition-based designs.
Additional details of our experiments can be found in arXiv [9].

A. Hardware Resource Usage

To evaluate the hardware resources required by Medusa, we
thoroughly evaluate a representative design point, which uses a
512-bit memory interface and a layer processor with 32 16-bit read
and write ports and 2048 DSP slices. For each read/write port, the
interconnect can buffer a maximum burst of 32×512-bits.

Table I shows the resource breakdown of the two designs. For
each design, we present the resource use of the whole design, the
read data-transfer network, and the write data-transfer network in
isolation. The percentages show resource use relative to the capacity
of a Virtex-7 690T.

First, we focus on the data transfer networks in isolation. For
memory read, compared to the baseline, the Medusa transposition-
based network reduces LUT use by 3.84x and FF use by 4.04x, at
a cost of 32 BRAMs. For memory write, the Medusa transposition-
based network reduces LUT use by 5.61x and FF use by 8.20x, also
at a cost of 32 BRAMs. Combined, the Medusa networks achieve
4.73x LUT and 6.02x FF savings, at a minor BRAM cost.
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We next consider the entire design, including the layer processor
and memory interconnect (Total). The baseline uses 1.27x more
LUTs and 1.23x more FFs than the Medusa transposition-based
design, whereas the transposition-based design uses 1.09x more
BRAM. This shows that the LUT and FF savings achieved by the
Medusa data transfer networks are significant even in the context
of a resource-heavy layer processor. In the baseline, the read and
write data-transfer networks account for 22.6% of the total LUT use
and 22.7% of the total FF use of the accelerator. Medusa reduced
these to 6.1% and 4.7%, respectively.

The Medusa network’s efficiency stems from its lower logic
complexity and its ability to make efficient use of BRAMs, saving
LUTs, FFs, and routing resources. The Medusa design uses a total
of 64 BRAMs to efficiently buffer data. In contrast, if the baseline
design were to use BRAMs in its data-transfer networks, 960
BRAMs would be needed, making it a poor trade-off with respect
to the savings in FFs and LUTs. This is because each 18-Kbit
BRAM is 36 bits wide, and each 32x512-bit FIFO would consume
15 BRAMs, requiring a total of 960 BRAMs for 32 memory-read
FIFOs and 32 memory-write FIFOs.

B. Performance and Scalability

To evaluate Medusa’s effect on performance, we find the peak
post-P&R frequency of each design, searching in 25MHz steps. For
scalability, we adjust the layer processor’s size from 512 to 2816
DSP slices, in steps of 256 DSP slices. Larger designs require more
read/write ports, so the DRAM interface width also grows from
128 bits to 1024 bits.

Figure 5 shows how the peak reachable frequency changed as the
accelerator’s size increased. The vertical dashed lines divide the data
points into four regions, based on DRAM interface width. Points at
0MHz indicate that Vivado was not able meet timing at 25MHz. The
data points at 2048 DSP slices correspond to the designs examined in
Section IV-A. In this case, the baseline’s peak frequency is 125MHz,
whereas the design using Medusa can reach 225MHz, 1.8x faster.
As the designs scale upwards, the performance benefit of Medusa
increases: once the DRAM interface grows to 1024 bits, Medusa
can reach 225MHz, yet the baseline failed to meet timing at 25MHz.

V. RELATED WORK

Our work focuses on providing an efficient memory interconnect
for DNN accelerators that require access to DRAM through many
narrow read and write ports. Some designs [10], [11] avoid the
need for such an interconnect by altering the layout of data in

DRAM. The main drawback of this approach is that it limits
the choices of data flows inside the layer processors, which can
lead to underutilization of compute units [4]. Other designs [3],
[12] avoid the width mismatch problem by using narrow memory
controller buses, which can result in bandwidth bottlenecks even
when DRAM bandwidth is available.

VI. CONCLUSIONS

This paper presented a resource efficient and high-performance
memory interconnect for connecting many-port DNN accelerators to
wide DRAM controller interfaces. We analyzed and experimented
with commonly-used mux/demux-based interconnects, and
concluded that they were over-provisioned and had serious
scalability limitations.

To address this problem, we tailored our design to the needs
of DNN accelerators and used a transposition unit to implement
memory bandwidth partitioning. Our design has lower logic
complexity and can efficiently use BRAMs to reduce LUTRAM
use. Experiments showed that, compared to the baseline design,
our Medusa design reduced LUT and FF usage by 4.7x and 6.0x
respectively, and improved peak frequency by 1.8x.
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