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Abstract—Explicit state model checking has been widely used
to discover difficult-to-find errors in critical software and hard-
ware systems by exploring all possible combinations of control
paths to determine if any input sequence can cause the system
to enter an illegal state. Unfortunately, the vast state spaces
of modern systems limit the ability of current general-purpose
CPUs to perform explicit state model checking effectively due
to the computational complexity of the model checking process.
Complex software may require days or weeks to go through the
formal verification phase, making it impractical to use model
checking as part of the regular software development process.

In this work, we explore the possibility of leveraging FPGAs
to overcome the performance challenges of model checking.
We designed FPGASwarm, an FPGA model checker based on
the concept of Swarm verification. FPGASwarm provides the
necessary parallelism, performance, and flexibility to achieve
high-throughput and reconfigurable explicit state model check-
ing. Our experimental results show that, using a Xilinx Virtex-
7 FPGA, the FPGASwarm can achieve near three orders of
magnitude speedup over the conventional software approach to
state exploration.

Index Terms—accelerator; model checking; formal verification

I. INTRODUCTION

Testing and verification is one of the most important parts of
the development process for mission-critical software used in
systems such as medical devices, transportation, and aviation.
Any possibility of errors, however rare, puts humans and
property at risk and may have devastating impacts, including
the loss of lives. Traditional unit-testing already places an
immense burden on the developers, and yet is unable to
cover all execution cases and identify rare bugs. Explicit state
model checking enables automated state-space exploration,
capable of verifying high-level safety and liveness properties
of systems by methodically traversing the state transition
graph of the software under all possible input conditions and
verifying if any of the reached states violate the specification.

Unfortunately, the rapidly growing complexity of software
makes it increasingly harder to verify. Even simple routines
in modern applications can have tens of billions of states.
Exploring each of the states requires a model checker to
perform several computationally-expensive tasks, including
successor state generation and state hashing, that cannot be
executed efficiently by general-purpose CPU cores. As a
result, verifying complex software with state-of-the-art model
checkers [1] is extremely slow, requiring days or weeks of
computation.

One promising solution to the scalability challenges of
traditional explicit state model checking is the Swarm veri-
fication approach [2]. Swarm verification utilizes parallelism
to independently execute a large number of verification tasks
while relying on randomized diversification of these verifi-
cation tasks to statistically ensure high state-space coverage.
Instead of sequentially exploring all possible system states,
which would require an enormous amount of memory and
compute, Swarm verification partitions the model checking
operation into small verification tasks (VTs) by limiting the
memory consumption of each VT, and running a large number
of such VTs in parallel. To achieve high coverage, Swarm
verification leverages the statistical nature of hash collisions
within the small VTs to ensure that the VTs explore different
paths within the state space. By running a large number
of small VTs across many cores, Swarm verification has
been demonstrated to accelerate model checking jobs by an
order of magnitude [2]. However, the overall model-checking
performance is still limited by the capabilities of the general
purpose CPUs on which the tasks run.

In this work, we observe that, unlike conventional ex-
plicit state model checking, which requires huge memory
capacity to keep track of the already-visited states and the
state exploration frontier, Swarm verification tasks require
limited memory capacity and massive parallelism. In fact,
these are ideal conditions for an FPGA implementation. Taking
advantage of these characteristics, an FPGA implementation
of Swarm verification can limit the memory capacity to the
size of the on-chip Block RAM (BRAM). Doing so provides
huge memory bandwidth (hundreds of GB/s random access
with fixed latency) to the hardware design to support the
required parallelism. Furthermore, FPGAs are an ideal fabric
to implement dedicated logic for successor state generation,
state hashing, and state validation, the most computationally-
intensive parts of the model checking process.

Based on these observations, we developed FPGASwarm,
a hardware architecture that adapts the concept of Swarm
verification to the FPGA environment, resulting in a de-
sign that achieves unprecedented performance for explicit
state model checking. The computational components of each
FPGASwarm core are automatically generated using High-
Level Synthesis (HLS) to avoid time-consuming RTL imple-
mentation and to enable the automated translation of soft-
ware models into FPGA implementations of successor-state
generator and state verification functions. These components



are deeply pipelined to achieve one-state-per-cycle verification
throughput at high clock rates. Because each FPGASwarm
core requires little on-chip resources, we instantiate many
cores to gain performance through parallelism, partitioning the
on-chip BRAMs among the cores and studying the trade-off
between core parallelism and per-core memory capacity.

To evaluate our FPGASwarm design, we leverage the
methodology for evaluating Swarm verification [2], using a
synthetic model with a controllable number of states and
easily measurable exploration coverage. We implement the
FPGASwarm using SystemC HLS, targeting a PCIe based
FPGA board with a Xilinx Virtex-7 FPGA. Running at
250MHz, our FPGASwarm implementation achieves near
three orders of magnitude speedup over Swarm verification
running on a leading-edge multi-CPU server, bringing down
the verification time of a model with 4B states from three
hours down to a few seconds and definitively demonstrating
the ideal fit of the FPGA platform for explicit state model
checking.

The rest of this paper is organized as follows. Section II
provides an in-depth discussion of explicit state model check-
ing, the Swarm verification technique, and the motivation
behind our FPGASwarm approach. Section III describes the
FPGASwarm and its implementation. Section IV presents our
evaluation and results. Section V discusses related work and
Section VI concludes.

II. MOTIVATION AND APPROACH

A. Introduction to Model Checking
Explicit state model checking aims to exhaustively check all

reachable states of a software application, known as the state
space, to confirm that all reachable states meet the developer-
specified safety and liveness properties [3]. This paper focuses
on using explicit state model checking to determine whether a
software implementation meets safety properties by checking
if there exists a set of conditions that would result in the
software entering an illegal state.

Explicit state model checking works by traversing the entire
state transition graph of the software being verified. States
are represented by the model checker as bit vectors that
describe the values of the software variables and hardware
registers (e.g., the program counter). Due to its large size, the
state transition graph is generated on the fly by a successor
state generator function, which transforms any valid system
state (bit vector) into a list of the possible states that the
system can transition to within one time step. As an example,
when verifying a program that includes a “switch” statement
whose active branch depends on an external program input, the
successor generator function will produce a successor state for
each of the possible execution paths.

Figure 1 shows the basic process of explicit state model
checking. The State Queue is initialized with one or a set
of starting states. The Successor State Generator takes states
from the State Queue and produces all possible successor
states based on the software model, passing the successor
states on to the State Validator to check whether any of the
generated states violate the specification. Each non-violating
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Fig. 1: Explicit state model checking processing flow. If all
inputs to the visited checker are reported as visited, eventually
the state queue will become empty and the model checking is
considered finished.

state is then passed through the Visited State Checker, which
determines whether or not this state was visited previously,
also updating the underlying data structure to indicate that
the state under consideration has now been visited. All pre-
viously unseen states are enqueued into the State Queue and
the process continues until the State Queue becomes empty,
indicating that all reachable states have been explored.

The Visited State Checker is a critical component of ex-
plicit state model checking, ensuring that the model checking
process does not enter infinite loops. A naı̈ve implementation
of the checker would use a large lookup table, indexed by
the state bit vector, pointing to a single bit for each state to
indicate whether or not that state has been visited. However,
the size of this lookup table would be prohibitively large
for anything but the most trivial models. The commonly
accepted solution, called bit-state hashing, limits the size
of the data structure by hashing the state bit vector into a
smaller index. However, due to the smaller structure and the
possibility of hash collisions, the checker may yield false
positives, erroneously identifying previously unseen states as
having been visited and preventing the model checker from
exploring the entire state space. Bit-state hashing potentially
results in a reduction of the model checker coverage because
not all states are visited. However, this trade-off is accepted
for the verification of complex software, because bit-state
hashing makes the memory requirements of the Visited State
Checker feasible while still providing a statistical bound on
the explored fraction of the state space.

B. The Challenge of Model Checking
The state space of a software application is described by the

values of all software variables and hardware registers. As an
example, modern avionics software has many tens of billions
of states [4]. As the number of variables grows with the
complexity of the software, the state space grows exponentially
with the number of bits of the state vectors. This problem,
dubbed as “state explosion,” is generally considered the main
challenge of model checking.

Furthermore, the operations that the model checker must
perform on each state, including successor state generation,
state validation, and visited state check, are computationally
expensive. This is particularly noticeable when the model
checker runs on a general-purpose CPU, where each state
needs a significant amount of processing time. The combi-
nation of the poor performance of general-purpose CPUs on



these tasks and the immense state space size make verifying
complex software extremely time consuming in the best case,
if possible at all. For example, a single core can only visit
roughly 105 states per second on the fleet model [2]. The size
of the state space of fleet is not known, but is guaranteed to
be more than 1011 states. Using a general-purpose core will
require more than eleven days to explore these states.

C. Swarm Verification

One promising approach to overcome the limitations of
traditional explicit state model checking is Swarm verifica-
tion [2], which offers a way to limit the memory requirements
of the model checker and to enable effective parallelization of
the model checker across a large number of servers. Instead of
running a single model checker whose goal is to explore the
entire state space, Swarm verification breaks up the state space
exploration into many independent verification tasks (VTs).
Although each VT covers only a small fraction of the state
space, running many VTs on many servers (e.g., in the cloud)
allows the aggregate system to more quickly explore a large
fraction of the overall state space across many VTs, compared
to what can be done by a single large verification task.

As proposed in [2], Swarm verification limits the memory
requirements and the run time of each VT by constraining the
size of each hash table in the Visited State Checker of each
VT. This organization creates a trade-off between the memory
requirements of each VT and the coverage that it contributes
to the overall state space exploration. A smaller hash table
results in more false positives in the Visited State Checker
due to the hash collisions, which reduces the contribution of
each VT to the overall state-space coverage. However, while
a single VT can explore only a small part of the state space,
the Swarm verification approach relies on diversification of
the VTs, causing VTs to randomly explore different parts of
the state space to ensure that, together, the VTs statistically
achieve high coverage. Diversification actually benefits and,
in fact, relies on the statistical nature of false positives in
small hash tables. Each VT in the Swarm uses a different
random hash function for its Visited State Checker. Different
hash functions result in each VT experiencing a different set
of false positives when determining already-visited states, and
therefore lead to each VT diverging in the paths that it explores
compared to the other VTs in the Swarm.

When leveraging machines in the cloud, Swarm verification
improves the performance of model checking by an order of
magnitude [5]. However, the model checking process is still
limited by the computational throughput of the individual VTs
running on general-purpose processor cores. Moreover, while
the parallelism afforded by running across many machines
improves performance, this is achieved at a high cost where
hundreds of machines are used to run diversified VTs.

D. Accelerating Swarm Verification With FPGAs

In this work, we recognize that the key computational
bottlenecks of the verification tasks are a good fit for hard-
ware acceleration. Specialized hardware can efficiently run
successor-state generation state machines, and unrolled hash

function implementations can be leveraged by the visited state
checker. However, even if the hardware implementations can
be deeply pipelined, the throughput of traditional explicit
state model checking cannot be significantly improved with
specialized hardware because of the inherent need to work
with a large hash table and state queue structures. These
structures must be stored in off-chip DRAM and access to
them would form the fundamental bottleneck of the system.

Critically, we observe that adapting the Swarm verification
approach to FPGAs removes the reliance on large data struc-
tures and enables the use of on-chip BRAMs to build tiny, but
extremely fast, VT cores. Although each VT core can explore
only a minute part of the state space compared to its software
counterparts, it can do so very quickly. By developing effective
diversification techniques for an on-chip swarm of VT cores,
and by diversifying not just across space (running diverse
VTs in parallel), but also across time (by serially running
many diverse VTs on each VT core), the aggregate state
space coverage of these tiny VTs can far outstrip the coverage
achieved by a software Swarm, in a fraction of the time.
Additionally, major cloud datacenters already have FPGA-
equipped nodes [6], [7], making FPGASwarm verification
readily accessible to practitioners.

III. THE FPGASWARM ARCHITECTURE

In this work, we propose the FPGASwarm to achieve fast
and reconfigurable explicit state model checking using FPGAs.
Figure 2a presents the FPGASwarm architecture, comprising
many VT Core model checkers that independently execute
diversified VTs. The VT cores are connected to a set of
shared AXI control registers and a memory port. The AXI
interconnect provides a standard mechanism to interface with
the accelerator and a small amount of shared storage between
the accelerator and the host PCIe bridge. The control register
includes the start and reset signals, which can be set with
memory-mapped IO requests from the host software via PCIe.
The shared storage is used by the host software to deposit the
model checker starting state and to read out the violating state
log. Because the logic needs of each VT core are relatively
small, the number of VT cores that can be instantiated is
dictated by the BRAM capacity of the target FPGA platform
and the corresponding memory requirements of each VT core.

A. VT Core

Figure 2b shows the high-level design of a VT core. Each
core has its own instance of the state queue, successor state
generator, state validator, and visited state checker modules.

The state queue is a standard FIFO that holds the states
representing the exploration frontier. The width of the queue is
dictated by the width of the state vector in the software model,
and the depth of the queue is limited by the allocated on-chip
BRAM capacity, which is split between this queue and the
visited state storage. The successor state generator dequeues
states one by one, generating a new successor state on each
clock cycle and passing it to the state validator module. After
confirming that the newly-generated successor state is valid
(or recording it in the violation state log), the successors
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Fig. 2: The implementation of FPGASwarm. (a) shows the
components and connections on the FPGA board. (b) shows
the details of one of the FPGASwarm VT cores, including its
connections with the shared AXI ports.

are passed to the visited state checker, which inserts them
into the state queue after confirming that they have not been
previously visited. This organization follows a breadth-first
traversal of the state space dictated by the software model,
although collisions in the visited state storage randomly prune
parts of the state space explored by the running VT.

The successor state generator dequeues one state at a time
from the state queue and generates all of the possible successor
states, one per cycle. Depending on the model complexity, the
successor state generator may be deeply pipelined to achieve
high throughput. Similarly, the state validator and the visited
state checker may require deep pipelines to ensure the target
throughput of one state per cycle.

The state validator checks if a state violates the specifica-
tion. Violating states can be described either using explicitly
specified state vectors or as functions applied on the state
vector Upon discovering a violation, the state validator logs
the violating state into the shared storage, which is accessible
to the host software. To write the violating states into shared
storage, each VT includes a FIFO interface to a shared module,
which uses an AXI master port to write to memory via the AXI
interconnect. The frequency of discovering violating states is
extremely low (after all, the goal of the model checker is to
verify that there are zero violating states in the entire state
space), which makes the performance of this module irrelevant
and inspires this simple and low-cost implementation.

The visited state checker comprises a hash function, which
transforms a state vector into an index, and a lookup table
of bits corresponding to whether or not the state has been
previously visited (or a potential false positive). If the hash
structure indicates that the state has not been previously
visited, the corresponding bit is set to mark the state as visited.
If the state was previously unseen in this verification task, it
is inserted into the state queue. Otherwise, if it has already
been visited, the state is simply dropped. To minimize the
implementation cost of this structure on an FPGA, the lookup
table is arranged into 64-bit words, each corresponding to
64 consecutive states. Despite being deeply pipelined, full
forwarding paths on this structure are unnecessary, because the
structure need not be precise; making short-term mistakes (by
occasionally failing to mark a state as visited or by revisiting
a recently visited state) does not violate correctness.

Because the visited state storage is reused by VTs running
on the same core, the storage must be cleared between VTs.
Clearing the storage one bit at a time would result in the VT
core being idle for approximately the same amount of time as
running a VT. Arranging the storage as 64-bit words reduces
the gap between two consecutive VTs by 64x by allowing the
VT cores to clear the storage at coarse granularity. To further
minimize the interval between the execution of consecutive
VTs, we partition each visited state lookup table into multiple
banks and clear the banks in parallel.

In theory, a verification task should end when the state queue
is empty and there are no more states to explore. In practice,
the deep pipelines of the VT core components make tracking
how many states are in flight non-trivial, especially toward
the beginning and the end of a verification task, when the
state queue may be empty while successor states are making
their way through the various component pipelines. Rather
than introduce costly mechanisms to track the precise number
of in-flight states, we rely on a simple timeout mechanism
that tracks the number of consecutive cycles during which the
state queue was empty. If the number of cycles exceeds a pre-
defined value (set slightly greater than the pipeline depth of the
entire VT core), the VT core considers the current verification
task completed and automatically starts the next VT.

B. Memory Usage Strategy

To provide independent and high-bandwidth state queues
and visited state storage, these structures are implemented
using the on-chip BRAM, which is on the order of a few
MBs in our target FPGAs. Compared to the software Swarm
verification, where each core has a large visited state storage
in main memory, the visited state storage for each VT core
is relatively small. This consideration significantly skews the
Swarm verification trade-off to a large number of VTs that are
toward the extreme end of low-memory requirements.

In addition to the coverage, the size of the visited state
storage also affects the run time of each VT. A visited state
checker will fill smaller storage faster than larger storage. A
full visited state storage causes the visited state checker to
report every state as visited and preventing any new states
from being inserted into the state queue. Software Swarm



verification takes more time to finish each VT because of
the larger visited state storage and slower successor state
generator, state validator, and visited state checker operations.
On the contrary, FPGASwarm VT cores process VTs using
small visited state storage and fast dedicated hardware circuits,
finishing each VT in a matter of milliseconds. As a result, to
compensate for the low coverage of each VT, the FPGASwarm
serially runs a large number of diversified VTs on each
FPGASwarm core.

C. Diversification

Effective VT diversification is critical to FPGASwarm ver-
ification. The system must ensure that the VTs independently
explore the state space with high entropy, leading to diversity
in their exploration paths through the space. Without suffi-
cient diversification, the VTs would perform redundant work,
requiring much more time to fully explore the state space.

We rely on randomization in our diversification strategies.
For this purpose, each VT core includes a linear-feedback
shift register (LFSR) to generate a sequence of pseudo-random
numbers. We initialize each LFSR to a unique value (based
on the VT core ID) to ensure that each produces a different
sequence. The LFSR state is preserved between VTs, making
each VT in the FPGASwarm start with a different LFSR state.

The LFSR state provides seeds for several parts of the
verification process. In the successor state generator, the
LFSR value is used to randomize the order in which the
successor states are generated. This provides exploration path
randomization, ensuring that different VTs explore the state
space in a different order, allowing the exploration to diverge
very quickly even through VTs begin exploration at the
same starting state. In the visited state checker, the index
computation uses the Jenkins hash function [8] to map state
vectors to indices in the visited state storage. At the start of
each VT, the VT core stores a copy of the LFSR state and uses
this value as the salt to initialize each state hash computation
of the VT. As a result, the same state will hash to a different
index in the visited-state lookup table in every VT, which leads
to different hash collisions and promotes diversification and
divergence of the VT exploration paths.

Beyond the above explicit randomization, we find that the
limited FPGA BRAM capacity available for the state queue
further contributes to diversification. Because the successor
state generator typically produces multiple successor states for
each state, the enqueuing rate of the state queues can be higher
than the dequeuing rate, which could cause deadlock in the
verification pipeline if the queue becomes full. To avoid dead-
lock, the FPGASwarm’s visited state checker simply drops
successor states if no space is available in the state queue. The
selection of dropped states depends on the state exploration
order and the size of the state queue, essentially dropping
states randomly and introducing an additional highly effective
diversification mechanism. Unlike the software Swarm imple-
mentation, the FPGASwarm benefits in diversification from
both the collisions in the limited capacity of the visited state
storage and the limited capacity of the state queue.

During the development of the FPGASwarm, we also con-
sidered a design where the size of the visited state lookup
table would vary across the VT cores, mimicking the software
Swarm implementation. However, we found that this technique
does not improve performance of the FPGASwarm. In Sec-
tion IV-D, we show the detrimental performance impact due
to excessively small visited state storage tables. Because the
BRAM capacity of the FPGA dictates the number of VT cores,
varying visited state storage size across the VT cores would
either reduce the total number of cores that fit on chip or
would result in some of the VT cores incurring performance
degradation due to under-sized storage.

IV. EVALUATION

This section presents an evaluation of the FPGASwarm
design on a Virtex-7 FPGA. The experiments described here
allow us to: (1) identify the best set of parameters for the
design, (2) measure its run time and compare it to the state-of-
the-art software implementation of Swarm verification, and (3)
evaluate the FPGA resource consumption and clock frequency.

A. Implementation

We prototyped the FPGASwarm targeting the Xilinx Virtex-
7 XC7V690T FPGA. We implemented the design using
SystemC with Xilinx Vivado HLS. High-level synthesis is
particularly useful for creating pipelined implementations of
the successor state generator, the state validator, and the visited
state checker hash function. These blocks are specified as
Boolean functions written in high-level languages, which are
a simple use case for HLS. Critically, using the HLS flow to
implement the FPGASwarm avoids the time-consuming and
error-prone translation of the model (successor state generator
and state validator) from the model specification to RTL
implementation. Using a parameterized and template-based
SystemC design also allows the FPGASwarm to be easily
configured to support any number of VT cores and various
amounts of BRAM for the state queues and hash tables,
enabling easy experimentation and transition between different
FPGA devices. Furthermore, constructing the FPGASwarm
using HLS makes the framework much easier to use for
practitioners. For example, by leveraging prior work for trans-
lating application C source code into Promela models [9] and
then translating Promela models into branch-free C [10], a
practitioner can implement a high-performance fully-pipelined
FPGASwarm without any knowledge of RTL.

B. Evaluation Methodology

We measure the performance of the FPGASwarm in terms
of the time to explore the state space. We follow the evalua-
tion methodology used in [2], which uses a synthetic model
checking problem: a coverage test that aims to explore all 32-
bit integers. The model represents a system with eight software
threads, each responsible for a group of 4 bits within a shared
32-bit value. At each time step, a random thread sets a random
bit within its group. This model has 232 reachable states, but
the order in which the bits are set is chaotic, and the path
to reach any specific number is entirely random. 100 of the



states (100 random 32-bit integers) are designated as violating
states. This model enables an easy estimation of the aggregate
fraction of the state space that is explored by the VTs because
the 100 violating states are randomly distributed throughout
the space. The number of violating states discovered by the
model checker serves as a proxy for the percentage of the state
space explored (e.g., to find 20 unique violating states, the
system must explore approximately 20% of the state space).

We determine the runtime required by different configura-
tions of the FPGASwarm by setting the appropriate configura-
tion parameters in our design and running SystemC simulation.
This methodology allows us to easily evaluate various config-
urations without needing to perform synthesis and place-and-
route for each design. To compare with software, we also run
the same experiments using Swarm 3.2 with SPIN 6.4.7 [1],
using an Intel dual-socket server that has two Xeon E5-2670v3
CPUs (24 cores total) running at 2.3GHz and Hyper-Threading
enabled (48 hardware threads total), with 128GB of RAM.

To evaluate the implementation costs of a configuration of
FPGASwarm, we synthesize its SystemC specification using
Xilinx Vivado HLS 2017.4 and perform synthesis and place-
and-route using Xilinx Vivado 2017.4, evaluating the clock
frequency and resources required (logic and block RAM).

C. Number of VTs for Full State Space Coverage

We first explore whether the FPGASwarm is capable of
achieving high state space coverage even with a limited visited
state storage budget. As described in Section III-B, there is
only a small amount of memory available for each VT core
to store the states it has already visited; once this memory is
full, the VT terminates, and a new VT must launch on the
core. This consideration is further compounded when many
VT cores are used, as the BRAM must be divided among the
cores. Because the memory available per VT is much lower
than in a software Swarm implementation, we first conduct an
experiment to demonstrate that the entire state space can still
be covered even with this limitation.

We created a set of designs whose overall BRAM utilization
(for all state queues and visited state storage) consumes 70%
of the FPGA’s BRAM (leaving 30% headroom to avoid place
and route congestion). These designs differ in the number of
VT cores used, from 8 to 48 in steps of 4; as the number of
cores increases, the per-core storage drops. We fixed the state
queue size and evenly divided the rest of the BRAM among the
visited state storage of all VT cores to examine a reasonable
range of the visited state storage tables. We simulated each
design until it discovered all 100 unique violating states.
Table I shows the number of VTs required to discover all
violating states for each design.

The general trend seen in this data shows the dominant
trade-off in the FPGASwarm design space. Starting at the top
of the table (four cores), we see that, as we start to increase
the core count (and therefore decrease the storage available per
core), the system generally needs to run fewer VTs to reach
full coverage. This highlights the fact that Swarm verification
actually benefits from hash collisions, because hash collisions
can result in a higher degree of diversification among VTs.

TABLE I: Total number of VTs run until discovering all
100 violating states, shown for various numbers of cores and
corresponding visited state storage size.

VT Cores Visited State Storage
per Core (KBytes) Executed VTs

8 512 316,464
12 320 158,448
16 224 134,000
20 160 78,280
24 128 57,384
28 96 64,232
32 80 42,994
36 72 83,052
40 64 44,640
44 48 45,716
48 40 433,008

In other words, imperfect information regarding which states
have already been visited can have a positive effect, leading
VTs to explore different parts of the state space.

However, there is an intuitive limit to this trend at the
bottom of Table I, showing that, once the per-core visited state
storage becomes too small, the number of VTs needed for full
coverage begins to grow dramatically. In this situation, the VT
cores quickly fill up their under-sized storage and incur many
false positives, terminating the VT before it has a chance to
explore a significant part of the state space. This results in
a dramatic increase in the number of VTs needed to explore
the entire state space. We tried increasing the number of cores
beyond 48, but observed a dramatic surge in the number of
VTs required—more than one million—preventing completion
of the cycle-accurate simulation in a practical amount of time.

D. FPGASwarm Performance

After verifying that the FPGASwarm is capable of achieving
full coverage, despite limited storage capacity, we evaluate the
overall speed of the system. First, it is important to note that
the time required to run a VT is not constant; a VT will run
until all states from the next state generator are dropped by the
visited state checker, preventing further discovery of unvisited
states. Therefore, the runtime of a VT depends heavily on the
size of the visited state storage.

Figure 3 shows the average run time per VT for various core
counts. (Recall that Table I shows how the number of VT cores
corresponds to the amount of memory available for each.)
Then, Figure 4 shows the total time the entire FPGASwarm
takes to explore the entire state space (compounding the
differences in the number of VTs that must execute and in
the time each requires). For lower VT core counts (more
storage), not only does the FPGASwarm need to execute
more VTs using fewer cores, but each VT also takes longer
to finish exploring its part of the state space. As a result,
the total time to explore the entire 4B-state space suffers,
taking approximately ten minutes. As the number of VT cores
increases, more cores are available to run fewer VTs, and the
average VT run time decreases, reducing the overall time to
about 10 seconds with designs that use 32 to 44 cores. Further
increasing the VT core count results in a increase in run time
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Fig. 3: Average run time per VT under different core count.
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Fig. 4: Total run time required to find all 100 random integers
using different numbers of FPGASwarm VT cores.

because the extra cores cannot compensate for the significantly
increasing number of VTs that must run.

E. Comparison with Software Swarm

Ultimately, our goal is to demonstrate FPGAs as an effective
platform for explicit state model checking, superior to general-
purpose CPUs currently used for this work. We therefore
compared the performance of FPGASwarm to SPIN, a popular
open source software verification tool, running Swarm verifi-
cation [2]. We configured the software system to use 24 cores
(48 hardware threads) and enabled all of the diversification
mechanisms available in the software. Swarm requires the user
to specify the maximum amount of visited state storage to
allocate per VT, in steps of powers of two. We explored this
parameter from 32KB, which is similar to the FPGASwarm
visited state storage, to 2GB, which is the upper bound of the
per-core visited state storage for our machine.

Table II shows the run time required to reach all 100 vio-
lating states for the 40-core configuration of the FPGASwarm
and the fastest configuration we observed using software
Swarm (256MB per-core visited state storage), with the
FPGASwarm outperforming software by about 900x. This
level of performance improvement from the FPGASwarm is
a potential game changer for explicit state model checking
and formal verification as a whole. For the first time, complex

TABLE II: Performance of software Swarm and FPGASwarm.

Software Swarm FPGASwarm Speedup

3 hours 12 seconds 900x

TABLE III: Post P&R characteristics of the FPGASwarm.

LUTs FFs BRAMs frequency power

112,272 (26%) 271,723 (31%) 1,027 (70%) 250 MHz 21 W

software functions with billions of states can be run through
a model checker at near-interactive performance during the
development process. Moreover, the software Swarm utilized
all cores of the system at full speed, which consumes approx-
imately 200W. On the other hand, the FPGA we used for the
FPGASwarm consumes much less power (approximately 21W
reported by the FPGA vendor tools), with the host system be-
ing effectively idle (using approximately 70W), demonstrating
that the FPGASwarm not only yields far better performance,
but also consumes less power. Although a single machine’s
power consumption is not critical for model checking, it
becomes an important consideration when scaling verification
to a large farm of machines (e.g., the cloud) to tackle more
complex and larger verification problems.

F. FPGA Resource Consumption and Clock Frequency
Lastly, we use Xilinx Vivado 2017.4 to synthesize and

place-and-route the 40-core configuration of the FPGASwarm,
targeting the Xilinx Virtex-7 XC7V690T FFG1761-3. Table III
presents the results, including the number of LUTs, FFs, and
BRAMs, as well as the frequency and the estimated FPGA
power consumption reported by Vivado. Our results show that
the BRAMs, as expected, are the critical component, while
abundant LUTs and FFs are available. Note that, although 44-
core FPGASwarm has better performance than the 40-core
configuration in our SystemC simulation, it cannot achieve
250MHz after being implemented on FPGA, thus has lower
performance on real hardware.

V. RELATED WORK

The SPIN formal verification tool [1], [11] has been widely
used for software model checking. A number of prior works
aim to improve the performance of SPIN. For example, [12]
partitions the state space across multiple servers and communi-
cates between them to meet the memory needs of larger mod-
els, and [13] describes parallelizing its BFS algorithm. [14]
uses the Parallel Structured Duplicated Detection (PSDD) al-
gorithm to parallelize SPIN. [15] uses Bloom filters to achieve
fast visited-state storage checks with low conflict ratios. Other
than improving SPIN, [16] utilizes a parallelization and ran-
domization strategy similar to Swarm verification to speed up
the Murphi verification system [17]. These works improve
explicit state model checking through enhanced exploration
algorithms or data structures. However, their performance is
limited by the speed of the general-purpose cores on which
they run. Our work utilizes a combination of the Swarm
verification approach [2] and FPGA hardware acceleration to



improve the performance of model checking, leveraging the
trade-off between parallelism and limited available storage,
and exploiting the benefit of dedicated hardware design for
high-speed computation.

Beyond addressing the performance bottlenecks from the
algorithm and data structure point of view, some prior ap-
proaches also use hardware accelerators to speed up explicit
state model checking. However, these approaches are generally
limited in scope or achieve only modest improvements. We are
aware of one prior work that leverages FPGAs to accelerate
explicit state model checking: [18] implements the Murphi
verification checker on an FPGA, reporting a 200x speedup
over general-purpose CPUs. However, the models considered
by [18] are limited by the system’s on-chip memory capacity,
and the system was evaluated only on a small model (on
the order of ten thousand states), while our FPGASwarm is
specifically designed to verify large software models with
billions of states using limited amounts of memory. More-
over, [18] relies on hand-implementing VHDL for each model,
while FPGASwarm demonstrates the use of high-level syn-
thesis to avoid the time-consuming and error-prone model re-
implementation in RTL. Several prior works have leveraged
GPGPU accelerators. [10] implemented the core SPIN BFS
algorithm in CUDA to run on a GPGPU device, while [19]
used a GPGPU to accelerate the PRISM model checker [20].
GPGPUs have also been used by [21], [22], [23] to run
the DiVinE model checker [24]. All of these works report
that GPGPUs accelerate explicit state model checking by less
than 10x when compared with the same software running
on general-purpose CPUs. In contrast, we show that the
FPGASwarm achieves 900x improvement.

VI. CONCLUSIONS

Explicit state model checking has been widely used as a
method to formally verify the correctness of software during
the development process. However, it takes days or weeks
to perform explicit state model checking even on small ap-
plications, whereas modern software continues to increase
in complexity. In this work, we identified an opportunity to
adapt Swarm verification, a technique developed to parallelize
explicit state model checking across systems with limited
memory, to model checking on FPGAs.

Taking advantage of the small memory requirements of
Swarm verification, we pushed this paradigm to its limits in
designing an FPGASwarm model checker that uses extremely
small on-chip BRAM storage, but compensates by running
an extremely large number of fast verification tasks. Our
FPGASwarm design provided the necessary parallelism, fast
computation, and flexibility to achieve unprecedented levels
of performance for explicit state model checking. We showed
that the FPGASwarm on a medium-size FPGA can achieve
near three orders of magnitude speedup when compared to
the state-of-the-art software implementation of Swarm verifi-
cation running on a top-of-the-line server system, definitively
demonstrating the superiority of FPGAs on this task.
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