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Abstract—There is a recent interest in large-scale RF spectrum
monitoring using low-cost crowdsourced spectrum sensors. A
major challenge here is improving the latency and energy usage
of signal processing algorithms on the sensor. This improves
operational cost and effectiveness and also makes the sensors
more responsive to the monitoring task. We specifically con-
sider the case of signal detection using such sensors. Typical
crowdsourced implementation using a low-cost software radio
connected to a Raspberry Pi or a smartphone as host is not
energy-efficient and incurs significant latencies. We propose
use of field-programmable gate array (FPGA) to improve both
metrics for the signal detection task. Our benchmarking shows
significant improvements with FPGA platforms relative to using
a Raspberry Pi or smartphone, upto a factor of 73 in terms of
latency and a factor of 29 in terms of energy usage.

I. INTRODUCTION

With the continual growth of RF spectrum occupancy,
there is an increasing interest in effective spectrum moni-
toring. Spectrum monitoring can be used to understand use
of spectrum, opportunistically allow the use of under-utilized
portions of the spectrum, and/or to detect unauthorized usage
of spectrum. To make such monitoring ubiquitous and cost-
effective, recent work has focused on crowdsourcing spectrum
monitoring using low-cost spectrum sensors. For example,
FlightAware uses crowdsourced spectrum sensors to detect
signals from airplanes flying overhead, and track them [1].
A number of academic studies on spectrum monitoring using
crowdsourcing has been reported [2, 3, 4].

While crowdsourced spectrum monitoring is effective, its
actual deployment faces a number of challenges. One of the
main bottlenecks towards deployment of a spectrum moni-
toring system is its high energy cost. Each spectrum sensor
needs to run continuously, thus consuming a lot of energy.
Moreover, since the crowdsourced spectrum sensors can be
mobile in nature [5], the energy efficiency is even more critical.
A second challenge is to reduce the latency of signal detection.
Many spectrum monitoring tasks directly or indirectly detect
specific signals. This requires processors with more compute
power. Thus, reducing both energy consumption and latency is
an important problem for large-scale, crowdsourced spectrum
monitoring.

Current crowdsourced spectrum monitoring proposals (e.g.,
[3, 5]) utilize a single board computer such as Raspberry
Pi or smartphone connected to a software-defined radio like

RTL-SDR [6] or LimeSDR [7]. These devices are often
energy-constrained in nature, especially in the case of outdoor
deployments. Current state-of-the-art techniques can optimize
energy either by reducing the duty cycle or using only a
subset of the available sensors, both of which hurt accuracy
of detection. Moreover, it is not possible to reduce latency of
detection without significantly improving the compute power
of the processor used. Since Raspberry Pis and smartphones
have limited compute power, reducing latency requires using a
more expensive processor board. Thus, a spectrum sensor that
can significantly reduce both energy consumption and latency
can improve the overall performance of spectrum monitoring.

In this work, we explore the use of field-programmable gate
arrays (FPGAs) in spectrum sensors. An FPGA is a digital
chip based on programmable logic. FPGAs allow algorithms
to be implemented directly in hardware, producing significant
performance and energy improvements. At the same time,
their reconfigurability allows FPGAs to be adapted for use
in differing conditions or to solve new problems without
manufacturing new hardware. FPGAs can be viewed as a
midway point between processor-based systems and the use of
application-specific integrated circuits (ASICs). ASICs exhibit
even higher efficiency than FPGAs, and with a lower per-
part cost. However, the use of ASICs requires an expensive
and time-consuming design and manufacturing process. This
combined with their inflexibility mean that, although ASICs
likely represent the best solution for a stable large-scale
deployment of spectrum sensors, FPGA-based sensors can be
better suited for the purpose of research.

We first observe that, when using a processor, computation
of the power spectral density (PSD) and detection algorithms
consume around 40 % of total energy cost, and incur 95 %
of total latency. (Details of these experiments are explained in
Section II.) Thus, we implement these components in hardware
on the FPGA to reduce energy and latency. By implementing
a flexible system that allows easy use of several different
FFT sizes and detection algorithms, we have produced a
framework that enables a systematic evaluation of the real-
world energy and latency costs of spectrum sensing on FPGA
and in software on smartphones and the Raspberry Pi.

Using this system, we perform a set of measurements to
understand the performance improvement and energy savings
of our FPGA-based sensor. We benchmark both energy-based



SDR Board

Signal

Random USB

Power Spectral Signal Detection
1/Q Datg Density Energy-based  |probability
- FFT Compute
-

Waveform-based

Access Memory Port

Autocorrelation-
based

Figure 1: An overview of our FPGA-based spectrum sensor.
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Figure 2: Energy consumption and latency of each unit of
a Raspberry-Pi based spectrum sensor.

and autocorrelation-based detection using our FPGA. We find

that the FPGA 1is able to achieve similar detection performance

with 73 times lower latency than using a smartphone or a

Raspberry Pi, while consuming up to 29 times less energy.
We summarize our contributions as follows:

« We demonstrate that computation speed is a performance
bottleneck on existing Raspberry Pi and smartphone-
based sensors.

« We implement an FPGA based spectrum sensing system.

« We run a set of benchmarks using multiple parameters
and algorithms, showing that the FPGA system has 73
times lower latency and 29 times lower energy consump-
tion compared to a Raspberry Pi based sensor.

The rest of this paper is organized as follows. In Section II,
we explain the working of spectrum sensors and the motivation
behind using an FPGA. Section III presents the design of our
FPGA sensor. In Section IV, we describe the measurement
results. Section V discusses related work, and we conclude in
Section VI.

II. BACKGROUND & MOTIVATION

In this section, we describe the working of a spectrum
sensor and explain the motivation behind using an FPGA.

A. Inside a Spectrum Sensor

We first explain the process of signal detection. The signal
is captured by the radio front-end (sensing unit) as complex
numbers, representing discrete amplitude and phase values,
in terms of I and Q samples. A detection algorithm directly
operates on these samples to detect the presence of a signal on
an attached compute platform (compute unit). The Fast Fourier
transform (FFT) on the I/Q samples is a common operation
used by many such algorithms.

Many types of detection algorithms are possible. We will fo-
cus on two common ones — energy-based and autocorrelation-
based detection, also used in prior benchmarking studies [5].
In energy-based detection, the power of the signal within a
given channel is compared with a threshold. If it is greater
than the threshold, then the sensor considers the signal to
be present. The fundamental computation here is an FFT
on the I/Q samples to compute the Power spectral density
(PSD), followed by summing of the squared magnitudes of
each frequency bin in the FFT. The accuracy of energy-
based detection depends on the number of I/Q samples and
the number of frequency bins in the FFT. Increasing these
parameters improves the accuracy of detection by providing
higher frequency resolution. However, this also costs time and
energy, resulting in a trade-off between accuracy and cost.

In autocorrelation-based detection, we leverage the fact that
many signals can have a periodic component and thus could
be correlated over time, but noise is always uncorrelated. In
this technique, we calculate the correlation of the signal with
delayed copies of itself at specific periodic intervals. As the
signal is correlated, the same patterns should get repeated at
some lags, and thus a high degree of correlation should be
found at these lags. In this way, it is possible to detect very
weak signals, even in cases where energy-based detection fails.

B. Motivation

We motivate the need for FPGA-based spectrum sensors
using the following observations:

1) High resource cost of computation: To understand the
proportion of energy consumed in computation, we plot
the energy consumed by a Raspberry Pi in its different
stages. We use a Monsoon Power Monitor [8] to measure
the energy consumed when performing 1024-point FFTs
on 100K samples of data. (Details of the experimental
setup are described in Section IV.) Figure 2a shows the
energy consumed individually by: (i) a Raspberry Pi if it
is lying idle, (ii) by the sensing unit (SDR), and (iii) by the
compute unit (when it runs autocorrelation-based detection)
for the same amount of time taken by the compute unit. We
obtain the idle energy by measuring the energy consumed
during the entire amount of time taken to compute the
power spectral density if no computation is performed.
We compute the energy consumed by the sensing unit and
the compute unit by subtracting the energy value obtained
from the power monitor by the idle energy. We note that
the energy cost of the compute unit is overall 37 % of the
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Figure 3: Our experimental testbed consisting of three different types of sensors.

total cost. Thus, a significant amount of energy is spent on
computation.

We now look at the compute latency. We measure the
latency of different portions of the algorithm by printing the
timestamps at different stages of our software. We plot the
latency of sensing and computing incurred while running
an energy-based detector on 100K samples (Figure 2b).
The compute latency includes the time to perform the FFT
and to run the detection algorithm. The sensing latency
refers to the time to read data from the SDR front-end and
send it to the buffer, assuming the SDR is already on. We
again find that around 95 % of the latency is caused by the
compute time. This demonstrates that faster computation
can significantly speed up signal detection.

2) Repetitive execution: A second key observation is that the
computations performed (running the FFT and the signal
detection algorithm) are repetitive in nature. In other words,
the same process is repeated many times during execution.
This represents an ideal situation for hardware acceleration,
where a carefully-crafted hardware design can speed up the
specific “hot spots” of the algorithm.

III. OUR FPGA-BASED SPECTRUM SENSOR

This section presents the design of our FPGA-based spec-
trum sensor, as shown in Figure 1. Our system is implemented
using a Xilinx ZedBoard FPGA development board con-
nected to a Myriad-RF1 transceiver board [9]. The ZedBoard
uses a Xilinx Zyng-7000 All Programmable SoC (XC7Z020-
CLG484-1); this chip combines a standard FPGA reconfig-
urable fabric with an embedded ARM processor, which we
are using only for debugging. The Myriad-RF1 board includes
a Lime Microsystems LMS6002D transceiver, which covers
a frequency range of 300 MHz to 3.8 GHz, and uses a 12-
bit ADC. The RF1 connects to the ZedBoard FPGA system
via a Myriad-RF Zipper board, which provides a convenient
physical interface to the FPGA.

As shown in Figure 1, I/Q samples flow out of the Myriad-
RF1 (labeled “SDR Board”) and into the FPGA. First, we
designed logic to buffer the raw input data and synchronize
it with the FPGA’s internal clock rate. Then, our system

(b) Smartphone based sensor

(c¢) FPGA based sensor

feeds the data into an FFT core. We create the FFT modules
using the Spiral FFT generator [10], a system that produces
customized hardware for FFTs, parameterized by the FFT size,
data precision, and other options. We used Spiral to produce
different configurations, optimized for different FFT sizes. The
FFT core feeds its result (the frequency domain representation
of the input signal) into the signal detection unit.

The signal detection unit can be pre-configured to run a
detection algorithm based on energy detection, waveform de-
tection, or autocorrelation. For the energy detection algorithm,
we compute the energy over a specified (and configurable)
range of the frequency spectrum. For the autocorrelation-
based algorithm, we designed the hardware module to compute
the autocorrelation in the frequency domain. Each of these
algorithms outputs a stream of data that denotes the probability
that a signal of interest is present.

For convenience, we can store the stream of result data in
RAM using a Direct Memory Access (DMA) module or output
it directly to pins. From memory, the data is then sent out to
a computer or other device using either USB or UART ports.

IV. MEASURING RESOURCE USAGE

We focus on two distinct metrics of resource usage—(i)
compute latency and (ii) energy consumption. We perform
separate experiments on our Raspberry Pi, smartphone and
FPGA-based sensors. Figure 3 shows photos of our testbeds:
a Raspberry Pi 3 (model B) [11], a Samsung Galaxy S4
smartphone with an RTL-SDR based sensor, and the Xilinx
ZedBoard FPGA with Myriad-RF. The FPGA system is con-
structed as described in Section III; for the Raspberry Pi and
smartphone, we have implemented the algorithms in C.

A. Computation Latency

We first compare the computation latency of the three types
of sensors. For our FPGA, the latency is the time incurred
from the first I/Q sample arriving in the FPGA board, to
the output of the signal detection units. Because the FPGA
system uses our custom hardware design, its latency is a
deterministic value dependent only on the number of clock
cycles required by the computation hardware and the FPGA’s
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Figure 4: Comparison of latency of the compute unit of our FPGA, Raspberry-Pi and smartphone based sensors.

internal clock frequency. For the Raspberry Pi and smartphone
implementations, we measure the average latency by timing
the C code operating on a file of previously-stored I/Q data.

Figure 4 shows the latency of all three sensors executing
the energy-based and autocorrelation-based detection algo-
rithms. We find that the FPGA results in significant latency
improvements— for energy-based detection, FPGA has around
73x lower latency than the Raspberry Pi and 69 less than our
smartphone. This is expected, since the FPGA is configured
to use specialized parallel computational structures that can
execute the detection algorithms more efficiently than the
general-purpose processors used in the other systems. We also
note that the latency increases by a similar absolute value with
an increase in the FFT bin size. However, as the number of
samples is constant, this increase in latency is not significant
because the number of FFT computations reduces with an
increase in the FFT bin size.

B. Energy Consumption

To measure the power and energy consumption of the
Raspberry Pi and smartphone, we use a Monsoon Power
Monitor [8]. We subtract the power consumption reported
by the power monitor by the idle power to get the power
consumed in computation. For all systems, we find the energy
and power consumed by the system while running the energy-
based detection algorithm with FFT bin sizes ranging from
128 to 1024. For both smartphone and Raspberry Pi, we
avoid running other compute-intensive processes to avoid
interference. For the Raspberry Pi, we run the algorithms
remotely over a console by connecting it over a wired network.

Quantifying the exact power and energy consumption of
the FPGA is non-trivial. The ZedBoard FPGA system is a
development board that contains a variety of components (such
as DRAM, flash memory, and an ARM processor) which are
unused in our spectrum sensor. For this reason, physically
measuring the power of the entire development board does
not give a realistic measure of the power consumed by the
necessary components of the sensor. Instead, to obtain the
power consumption of only the FPGA (without considering
the unnecessary components of the development board) we
use the FPGA vendor’s power simulation tool (part of Xilinx
Vivado) to produce estimates of the power consumed by the
FPGA, which are labeled Zyng FPGA in our results.

Lastly, we note that the ZedBoard’s Zynq FPGA is greatly
over-provisioned for this application; our largest design uses <
20% of the chip’s reconfigurable logic and only two-thirds of
its arithmetic units. To quantify the further improvement avail-
able from using a smaller FPGA, we re-implemented the exact
same functionality (running at an identical speed) on a smaller
and lower-power Xilinx Spartan 7 FPGA (XC7S50FTGB196).
Vivado’s power simulation tool shows that the same design
on the Spartan 7 FPGA requires approximately one half of
the power as the Zynq FPGA. This design is labeled Spartan
FPGA in our results.

Figure 5(a) shows the power consumption of these systems.
We observe that the Zynq FPGA consumes about 8 times
less power than the Raspberry Pi. Moreover, the power con-
sumption can be further reduced by another 50 % by using
the smaller Spartan FPGA, whose size and logic capacity are
more appropriate for the application. Our results show that
it is possible to reduce power consumption using an FPGA,
but a careful design of the logic as well as the overall FPGA
system and its board is necessary.

To measure the energy consumption, we run PSD on 100K
samples with the sensor sampling rate set at 2 million sam-
ples per second. We then measure the energy consumed in
computing the PSD of these 100K samples by integrating the
result given by the Monsoon Power Monitor over the entire
period. Figure 5(b) shows the energy consumption of the three
sensors. Note that because of the effect of pipelining, the
energy consumption is not necessarily equal to the product of
power and latency. In general, we find a similar trend as seen
in power consumption. The energy consumption of the Zynq
FPGA and the Spartan FPGA are 14 and 29 times smaller
respectively than the Raspberry Pi at an FFT bin size of 256.
This confirms that a carefully designed FPGA can lead to
significantly lower energy consumption.

V. RELATED WORK

Recently, there has been a lot of interest in spectrum
monitoring using low-cost spectrum sensors, e.g., Specsense
[2], Electrosense [3] and Radiohound [12]. All utilize a large
number of RTL-SDRs, with each connected via USB to a
Raspberry Pi. Snoopy [13] proposes attaching a frequency
converter to smartphones and utilizing individual smartphones
as a spectral analyzer. In [S5] authors benchmark latency
and resource usage in similar Raspberry Pi and smartphone-
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Figure 5: Comparison of power and energy consumption of our FPGA, Raspberry-Pi and smartphone based sensors.

based spectrum sensors. In [4] authors investigate algorithmic
issues in optimizing overall energy consumption by intelligent
selection of the most relevant sensors.

The use of FPGAs for spectrum sensing is attractive due
to FPGAs’ flexibility, power efficiency, and computational
abilities [14, 15]. However, the relative difficulty of FPGA
implementation poses a significant barrier to implementation
and to understanding important tradeoffs. Prior work has made
a case for using FPGAs for spectrum sensing or related
problems, but these are limited in the scope of their hardware
considerations. For example, the FPGA system described by
[16] considers only one algorithm (energy detection) with a
single FFT size. In contrast to these studies, we focus on
performing a systematic performance comparison of an FPGA-
based sensor with the more widely available smartphone and
Raspberry Pi-based sensors.

VI. CONCLUSION

In this work, we systematically compare the performance of
spectrum sensors for signal detection tasks, where the compute
part of the sensors is based on embedded platforms such as
Raspberry Pi, smartphone, vs FPGAs. We first made the obser-
vation that computation is the most energy-intensive process
in spectrum sensing. We then described our implementation
of FPGA-based sensor, which efficiently runs the computation
entirely in hardware. We then compared its power consumption
and latency with the Raspberry Pi-based and smartphone-
based sensors. Our measurements show that the FPGA-based
sensor consumes up to 29 times lower energy, and has around
73 times lower latency than a Raspberry Pi-based sensor.
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