
MEMOCODE 2016 Design Contest:
k-Means Clustering

Peter Milder
Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11794–2350
peter.milder@stonybrook.edu

Abstract—K-means is a clustering algorithm that aims to
group data into k similar clusters. The objective of the 2016
MEMOCODE Design Contest is to implement a system to
efficiently partition a large set of multidimensional data using
k-means. Contestants were given one month to develop a system
to perform this operation, aiming to maximize performance or
cost-adjusted performance. Teams were encouraged to consider
a variety of computational targets including CPUs, FPGAs, and
GPGPUs. The winning team, which was invited to contribute a
paper describing their techniques, combined careful algorithmic
and implementation optimizations using CPUs and GPUs.

I. INTRODUCTION

This year marks the tenth iteration of the annual MEM-
OCODE design contest. Since 2007, contests have posed a
variety of problems to teams from around the world, focus-
ing on hardware/software solutions. Previous problems have
included bioinformatics [1], simulation of NoCs [2], com-
puter vision [3], data mining [4], [5], packet inspection [6],
rectangular-to-polar interpolation [7], sorting of encrypted
data [8], and matrix-matrix multiplication [9]. This year’s
problem is to perform k-means clustering on a large data set.

II. OVERVIEW

Figure 1 illustrates a simple example performing k-means
clustering on two-dimensional data. The black and blue squares
represent the data we want to cluster, and the large red circles
show the centers of our k = 2 clusters. Initially (Step 1), the
cluster centers are randomly-generated; the squares are colored
black or blue to indicate which of the two clusters each point
belongs to. The black-colored points are those closest to the
top-left center, and the blue-colored points are those closest to
the bottom-right center.

We can easily see in Step 1 that our randomly-chosen
centers are not well-placed with respect to the data. The
algorithm proceeds by re-calculating the location of each
center as the mean value of all the points within its cluster. That
is, the top-left red circle’s location gets moved to the mean of
the locations of all the black squares, and the bottom-right red
circle’s location gets moved to the mean of the locations of all
the blue squares.

The algorithm then proceeds iteratively. In the next iteration
(Step 2), the same sequence of operations are performed. First,
each of the data points is compared with the locations of the
centers, and is assigned to the closest cluster. Then, the centers’

Fig. 1. Example two-dimensional k-means example

locations are again updated by averaging the locations of each
element in the cluster.

As each iteration proceeds, the centers will move to better
cluster the data. We can see that by Step 3 the blue and black
dots are becoming better separated; by Step 4 they are fully
separated. The iterative algorithm will repeat until it converges
or a fixed number of iterations is reached.

Problem Description. Let D represent a set of observa-
tions consisting of n elements d0, . . . , dn−1, each representing
a point in m-dimensional space. Our goal is to partition these
n points into k clusters S0, . . . , Sk−1 in a way that minimizes
the distances between each element in D and the center of its
nearest cluster.

That is, the goal is to partition D into k clusters Si that
minimizes

k−1∑
i=0

∑
d∈Si

||d− µi||2,

where µi is the center (average) of all points assigned to
cluster Si, and distance is quantified using squared-Euclidean

distance:

||a− b||2 =

m∑
i=1

(ai − bi)2, (1)

where ai and bi represent the i-th dimension of the m-
dimensional a and b vectors. Note that we use squared Eu-
clidean distance to avoid an unnecessary square-root operation.

Heuristic Algorithm. A common method for performing
this clustering is an iterative refinement technique commonly
known as Lloyd’s algorithm [10]. Given a set of k initial cluster
centers µ0, . . . , µk−1, each iteration performs the following
two steps:

1) Assignment: assign each dj in D to the cluster Si

whose center µi is closest to it (based on the squared
Euclidean distance).

2) Update: Calculate the new centers µi of each cluster
Si as the average location of all points in Si:

µi =

∑
dj∈Si

dj

|Si|
,

where |Si| represents the number of elements as-
signed to Si.

These two steps repeat until the algorithm converges or
a fixed number of iterations is reached. For this contest, we
target a fixed number of iterations of Lloyd’s algorithm, or an
equivalent distance-metric target if other algorithms are used.

III. PROBLEM SPECIFICATION

The goal of the contest is to define a system that takes as
input: (1) a data set D consisting of n points in m dimensions
(where n and m are given), (2) a set of k locations (randomly-
chosen) in m-dimensional space which will serve as the initial
locations to place the cluster centers µi, and (3) the number of
iterations to perform if using Lloyd’s algorithm (or the target
cost metric if using another algorithm).

The system will produce as output: (1) the label for each of
the n points (each is an integer between 0 and k−1 inclusive),
and (2) the final k cluster centers in m-dimensional space.

The timed portion of the solution must start with all input
data in main system memory, and it must conclude with all
output data in main memory.

Algorithm Choice and Clustering Accuracy. Different
algorithms for performing this clustering can result in differing
numbers of iterations (i.e., a given algorithm may reach the
same quality of results in fewer iterations), or they may
converge on a different local minimum. For this reason, we
allowed any algorithm to be used so long as it reached
a solution “as good” as the naive reference algorithm, as
measured by the sum of the squared Euclidean distances of
each the point from its nearest center:

total distance =

k−1∑
i=0

∑
d∈Si

||d− µi||2,

where µi is the center (average) of all points assigned to cluster
Si, and ||a− b||2 is defined as in (1).

A target distance computed using this metric was provided
to contestants with the reference data sets.

Datatype. Elements in D were given as signed integers.
The range of the input values was limited such that every input
element can be represented as a 16-bit signed value.

The final output values are: (1) the labels of each input
element in D (thus, unsigned integers between 0 and k − 1),
and (2) the set of k cluster centers in m-dimensional space
(where each is a signed integer value).

Designers were allowed to choose to optimize the datatype
as appropriate. There was no constraint on the order that the
results were reported; for convenience the reference implemen-
tation code sorts them before storing to a file. (The time for
this operation was not included in our timing measurements.)

Functional Reference Implementation. We provided an
unoptimized naive software implementation of Lloyd’s algo-
rithm to serve as the functional reference for the contestants’
optimized implementations. It computes the given number of
iterations and stores the result.

This is summarized by the following pseudocode, given k
clusters, m dimensions, and T iterations.

initialize;
// begin timing here
for t = 1 to T {

for i = 1 to data set_size {
minDist = LONG_MAX;
for j = 1 to k {

dist =
calcDist(data[i], cluster[j])

if (dist<minDist) {
minDist = dist
labels[i] = j

}
}
clusterSums[labels[i]] += data[i]
clusterCounts[labels[i]]++

}
for j = 1 to k {

centers[j] =
clusterSums[j]/clusterCounts[j]

}
}
// end timing here
sort and output results;

Based on the problem definition, the order of the output
values does not matter. For convenience, the functional refer-
ence code performs post-processing to sort results based on
their location; this was done to allow an easy use of diff
to determine if two output files are equivalent. This sorting
was not required to be in contestants’ implementations, and
its runtime was ignored.

Data sets. Three data sets were provided to aid in vali-
dation and development. Each set contains an m-dimensional
input data set D and the initial values of the center locations.
Each set is accompanied by a reference solution (computed
using Lloyd’s algorithm) that provides the sorted center loca-
tions and accompanying labels for each input value. Details of

TABLE I. TEST DATA SET CHARACTERISTICS

Name Size (n) Dimensions (m) Clusters (k) Appx. Input Size Appx. Output Size

small 500 3 16 3 KiB 1 KiB
medium 100, 000 4 128 781 KiB 196 KiB
large 1, 048, 576 35 256 70 MiB 2 MiB

TABLE II. RUNTIMES FOR THE LARGE DATA SET.

Team Technology Platform Runtime (ms)

IPM Multicore OpenMP Intel Xeon E5 2697 v3 2,200
IPM MPI-2x CPU Intel Xeon E5 2697 v3 1,375
IPM Single GPU NVIDIA GTX 980 312
IPM Multicore+2x GPU Xeon E5 and GTX 980 250
IPM 2x GPU NVIDIA GTX 980 161
IPM 4x GPU NVIDIA GTX 980 106

the test data are given in Table I. All test data were generated
synthetically to have the desired size and characteristics.

IV. THE CONTEST

Participants were given approximately one month to im-
plement a solution using platforms such as FPGAs, GPUs,
and CPUs. The solutions were validated using the supplied
reference data sets. Performance was measured using the large
data set. The time taken to initialize data and to sort and read
the final result from memory was excluded from the runtime
measurement.

The submitted solutions were evaluated using two metrics:
pure performance and cost-adjusted performance. The pure-
performance metric was based solely on runtime, while the
cost-adjusted metric was defined as the product of runtime
and system cost. The system cost was determined based on
the lowest listed commercial price; if no price were available,
the system cost would be estimated by the judges. Contestants
were encouraged to include their own estimate of system cost
with their submissions.

V. RESULTS

In order to access the reference code and data, contestants
were asked to register by e-mail. Five teams consisting of
members from five different countries registered; only one
team submitted a full working implementation. This submis-
sion targeted GPUs and CPUs.

Table II summarizes the submitted results on several plat-
forms. The names and full affiliations of the participants are
included at the end of the paper.

As shown in the table, the winning team, from the In-
stitute for Research in Fundamental Sciences (IPM), Iran,
implemented their design using Intel Xeon E5 CPUs and
NVIDIA GTX 980 GPUs. Their overall best result computed
the solution in 106ms using four GPUs. In terms of cost-
normalized results, their best solution was the 2x GPU im-
plementation, which was only 1.5x slower than the 4x GPU
solution, at half the cost. The IPM team’s implementation
strategy involved careful parallelization of the problem across
available platforms, as well as optimization of the arithmetic
required by the problem. Their solution was based on Lloyd’s
algorithm, and they have contributed an invited paper to these
proceedings detailing their techniques [11].

VI. CONCLUSION

The 2016 MEMOCODE Design Contest was to efficiently
compute k-means clustering on a large multidimensional data
set. The winning team performed effective optimizations in-
volving the algorithmic structure and parallelism.

ACKNOWLEDGMENTS

Thanks to all of the contestants for their hard work, and we
congratulate our winners on their excellent results. Thank you
also to Yi Deng, Elizabeth Leonard, Klaus Schneider, Sandeep
Shukla, and Jean-Pierre Talpin for their help in planning and
organizing this contest.

PARTICIPANTS

Thank you to all of the participants. The winning team’s
members are Saeid Rahmani, Armin Ahmadzadeh, Omid Ha-
jihassani, SeyedPooya Mirhosseini, and Saeid Gorgin, from
Institute for Research in Fundamental Sciences (IPM), Iran.

REFERENCES

[1] S. A. Edwards, “MEMOCODE 2012 Hardware/Software codesign con-
test: DNA sequence aligner,” in IEEE/ACM International Conference
on Formal Methods and Models for Codesign (MEMOCODE), 2012.

[2] D. Chiou, “MEMOCODE 2011 Hardware/Software CoDesign Contest:
NoC simulator,” in IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2011.

[3] E. Nurvitadhi, “MEMOCODE 2013 Hardware/Software Co-design
Contest: Stereo Matching,” in IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), 2013.

[4] P. Milder, “MEMOCODE 2014 design contest: k-nearest neighbors with
Mahalanobis distance metric,” in ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE), 2014.

[5] ——, “MEMOCODE 2015 design contest: Continuous skyline com-
putation,” in ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2015.

[6] M. Pellauer, A. Agarwal, A. Khan, M. C. Ng, M. Vijayaraghavan,
F. Brewer, and J. Emer, “Design Contest Overview: Combined Architec-
ture for Network Stream Categorization and Intrusion Detection (CAN-
SCID),” in IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2010.

[7] F. Brewer and J. C. Hoe, “2009 MEMOCODE Co-Design Contest,” in
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2009.

[8] P. Schaumont, K. Asanovic, and J. C. Hoe, “MEMOCODE 2008 Co-
Design Contest,” in ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2008.

[9] F. Brewer and J. Hoe, “MEMOCODE 2007 co-design contest,” in
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2007.

[10] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. IT-28, no. 2, 1982.

[11] S. Rahmani, A. Ahmadzadeh, O. Hajihassani, S. Mirhosseini, and
S. Gorgin, “An efficient multi-core and many-core implementation of
k-means clustering,” in ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE), 2016.

