
Overcoming Resource Underutilization in
Spatial CNN Accelerators

Yongming Shen
Stony Brook University

yoshen@cs.stonybrook.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Peter Milder
Stony Brook University

peter.milder@stonybrook.edu

Abstract—Convolutional neural networks (CNNs) are revolu-
tionizing a variety of machine learning tasks, but they present
significant computational challenges. Recently, FPGA-based ac-
celerators have been proposed to improve the speed and efficiency
of CNNs. Current approaches construct an accelerator optimized
to maximize the overall throughput of iteratively computing the
CNN layers. However, this approach leads to dynamic resource
underutilization because the same accelerator is used to compute
CNN layers of radically varying dimensions.

We present a new CNN accelerator design that improves the
dynamic resource utilization. Using the same FPGA resources,
we build multiple accelerators, each specialized for specific CNN
layers. Our design achieves 1.3x higher throughput than the state
of the art when evaluating the convolutional layers of the popular
AlexNet CNN on a Xilinx Virtex-7 FPGA.

I. INTRODUCTION

Convolutional neural networks (CNNs) are transforming
machine learning. CNNs are being applied across diverse
fields, spanning recommendation systems [1], natural language
processing [2], and computer vision [3]. For CNNs, image
object recognition has become the de facto benchmark, with
new networks shattering all prior records in object detection
and classification every year.

However, improvements in CNN accuracy are achieved
through huge increases in the computational cost. State-of-
the-art CNNs are already not tractable on multi-core CPUs.
Although GPUs still afford adequate performance, GPU power
consumption makes them significantly less attractive at data-
center scale. As a result, FPGAs offer a promising opportunity
for CNN acceleration due to their programmable, massively
parallel, and power-efficient computing substrate.

CNNs comprise multiple computation layers, whose inputs
are arrays of different dimensions, given by the CNN specifica-
tion. The previous state of the art for using FPGAs for CNNs is
to implement an accelerator that we call a convolutional layer
processor (CLP), which iteratively processes the layers, one at
a time. A CLP design depends on parameters that control the
dimensions of its computational grid; its speed depends on
the compatibility of these dimensions with the CNN layers
it computes. CLP parameters are jointly optimized for the
ensemble of the layers in a way that maximizes the collective
throughput of the accelerator.

We observe that jointly optimizing a single CLP for all CNN
layers leads to dynamic underutilization of FPGA resources.
Although the CLP is optimized for maximum throughput,

the fixed dimensions of the CLP computational grid are
sub-optimal for some, or even all, of the individual layers.
On the popular AlexNet CNN [3], an “optimal” Single-CLP
derived from the state-of-the-art methodology [4] has dynamic
utilization of less than 75%. This means that, on average, more
than one quarter of the computational resources dedicated to
the CLP are unused.

To overcome this problem, we design an accelerator com-
prising multiple CLPs operating on a pipeline of images, with
each CLP specialized for a subset of the CNN layers. Our
design allows the dimensions of the CLPs to be specialized
to better fit the CNN layer dimensions, improving efficiency.
In this work, we demonstrate that our Multi-CLP AlexNet
design can achieve 97.1% dynamic DSP utilization, improving
performance by 31% over the state-of-the-art methodology
when targeting a Xilinx Virtex-7 485T FPGA.

II. RESOURCE UTILIZATION PROBLEM

Listing 1 presents the pseudo-code to compute a convolu-
tional layer of a CNN. Each layer takes as input a set of N
input feature maps and convolves them with filters, which are
sets of previously-trained values called weights. There are M
sets of filters; by convolving one set of N filters (N ×K×K
weights) with the input feature maps, one of the M output
feature maps is obtained. Each of the M output feature maps
is computed by repeating this process with each of the M sets
of filters.

A common approach for building a CNN accelerator is to
construct a convolutional layer processor (CLP), which com-
putes the nested loop in Listing 1. The same CLP is used to
process all CNN layers, one by one. Because different convo-
lutional layers have different dimensions (M,N,R,C,K, S),
such a “one size fits all” approach creates a dynamic resource
underutilization problem. In this section, we analyze how this
problem affects a state-of-the-art FPGA CNN accelerator.

A. State of the Art Design

The design in [4] is the state-of-the-art FPGA accelerator for
CNN convolutional layers. It employs loop transformations,
such as loop reordering, tiling, and unrolling, to reorder
computations and memory accesses, increasing throughput and
reducing data transfer. The transformed loop is used as a
template for constructing the accelerator. Critically, [4] tiles
and unrolls the N and M loops (Listing 2), determining

I [N][(R−1)∗S+K][(C−1)∗S+K] / / i n p u t f e a t u r e maps
O[M][R][C] / / o u t p u t f e a t u r e maps
W[M][N][K][K] / / w e i g h t s
f o r (m = 0 ; m < M ; m++)

f o r (n = 0 ; n < N ; n ++)
f o r (r = 0 ; r < R ; r ++)

f o r (c = 0 ; c < C ; c ++)
f o r (i = 0 ; i < K ; i ++)

f o r (j = 0 ; j < K ; j ++)
O[m] [r] [c] += W[m][n][i][j] ∗ I [n][S∗ r + i][S∗c+ j]

Listing 1. Pseudo code of a convolutional layer.

. . .
f o r (m=0; m<M ; m+=Tm) {

f o r (n =0; n<N ; n+=Tn) {
. . .

f o r (tm =0; tm<Tm ; tm ++) #UNROLL
f o r (t n =0; tn<Tn ; t n ++) #UNROLL
. . .

Listing 2. Pseudo code for tiling in a convolutional layer processor [4].

the number and organization of compute units based on
parameters Tn and Tm. To implement these two unrolled
loops, Tm vector dot-product units are constructed, each of
width Tn, each followed by an accumulation adder as shown
in Figure 1. This yields Tn × Tm multipliers and adders.

Given a resource budget (e.g., a number of DSP slices), one
can find the optimal Tn and Tm for a given convolutional layer.
In [4], a joint optimization is performed to create a single CLP
to compute all of the convolutional layers in the CNN. The
optimization finds the (Tn, Tm) that maximize the aggregate
performance of the CLP.

B. DSP Slice Utilization Problem

Although [4] produces a design optimized for the collective
performance of all convolutional layers, we observe that its
speed is limited by the fact that the different convolutional
layers of the CNN have different dimensions, but all are
computed on the same (Tn, Tm) CLP. Thus, the CLP that gives
the best performance across all layers is not necessarily well
suited for any one layer. Because the limiting factor of the
system performance is the amount of parallel arithmetic in
the CLP, a good way to quantify the cost of this mismatch is
to examine the dynamic utilization of the DSP slices used in
the arithmetic units. That is, we can quantify the percentage
of the time that the DSP slices in the CLP are doing work
versus the percentage of the time they are idle.

For example, the design in [4] targets the AlexNet CNN [3]
and uses 2,240 DSP slices for floating point arithmetic. For this
network and resource budget, the jointly-optimized optimum
(Tn, Tm) is (7, 64). However, the second layer has (N,M) =
(48, 128). Because 7 does not evenly divide 48, in 1/7th of the
cycles, the arithmetic units are underutilized; while computing
this layer, 6/7ths of the DSP slices remain idle. Thus, the
overall dynamic DSP utilization during the evaluation of this
layer on this CLP is 6/7 + (1/7)× (1/7) = 88%.

Even lower utilization is observed for layers where Tn > N
or Tm > M , resulting in underutilized DSP slices on every

vector dot
product

output
bufferinput

buffer

input
buffer

input
buffer...T n i

np
ut

s

Tn words

output
buffer

output
buffer

...

T
m outputs

weights

weights

weights

...

1 word

1 word

+

+

+

vector dot
product

vector dot
product

Fig. 1. A convolutional layer processor (CLP), based on the design in [4].
Each dot-product unit takes Tn inputs and Tn weights and produces one
output.

cycle. For example, the first layer of AlexNet has (N,M) =
(3, 48), but because the CLP design is (7, 64), the utilization
is only (3/7)× (48/64) = 32%.

Analyzing all convolutional layers in [4] gives a dynamic
DSP slice utilization of 74.1%, limiting the throughput to
under 75% of the maximum that could potentially be achieved
with the DSP slices used by this design. The cause of this
utilization penalty is the mismatch between the tile parameters
(Tn, Tm) and their corresponding loop sizes (N,M).

III. MULTI-CLP STRUCTURE AND OPTIMIZATION

To improve the dynamic resource utilization and thus the
performance of evaluating the CNN, we design a Multi-
CLP accelerator that uses several small convolutional layer-
processors rather than a single large one. The performance
advantage of our design comes from the CLPs having different
sizes, more closely matching the dimensions of the CNN
layers. This approach is possible because CNN accelerators
process many input images, allowing CLPs to concurrently
work on independent inputs.

Due to the feed-forward nature of the CNN structure, it
is natural to think of the layers of the CNN as a pipeline.
Therefore, one way to construct an accelerator with multiple
CLPs is to implement one CLP per layer. An accelerator
for an L-stage CNN would have L CLPs and would operate
on L independent input images. (That is, CLP1 would work
on image i while CLP2 works on image i − 1, etc.) This
would have the benefit of allowing each CLP to be optimized
solely for the dimensions of one CNN layer, avoiding the
underutilization problem within each CLP. In this case, every
CLP must still read its inputs from and write its outputs to
off-chip memory, because each layer requires different data
orderings than the previous layer produces, and the data sizes
are typically too large to hold on chip.

A limitation of this approach, however, is that it requires the
number of CLPs to be equal to the number of convolutional
layers. This poses several problems for practical CNNs. First,
it forces the design to divide the on-chip BRAM resources,
reducing the buffer size of each CLP. As a result, the ability to
exploit data reuse in each CLP diminishes, slowing each CLP

time
CLP 1:

CLP 0: L1 L3 L4

L2 L5

L1 L3 L4

L2 L5

segment segment

Fig. 2. Example of a Multi-CLP system with two CLPs.

and greatly increasing the whole overall memory bandwidth
requirement. Second, this one-to-one mapping of CLPs to
convolutional layers requires coordinating a large number of
accesses to off-chip memory, which is costly in terms of
performance and logic resources. Third, each CLP has an
overhead cost (e.g., control logic for address calculation and
loop index counting). If there are many CLPs, extra resources
(especially DSP slices) must be used for control logic instead
of CNN computation.

To address these limitations, we consider a Multi-CLP
design with P CLPs, where 1 ≤ P ≤ L (for a CNN with L
layers). Such an approach requires a single CLP to compute
multiple CNN layers. The assignment of layers to CLPs is
static, with each layer strictly assigned to a specific CLP.
Layers assigned to the same CLP need not be adjacent in
the CNN structure.

The operation timeline of a Multi-CLP accelerator is divided
into segments. In each segment, each CLP sequentially pro-
cesses its layers, with each layer having its own independent
data. The segment ends when all CLPs finish processing their
layers. Figure 2 shows an example where CLP0 processes
three layers (L1, L3, and L4) and CLP1 processes two (L2 and
L5). In each segment, each CLP only consumes data gener-
ated during the previous segment, avoiding data dependencies
within a segment. For example, the output produced by L1
in segment i will be used as input for L2 in segment i + 1.
This means that processing an image requires five segments
of time, therefore computation from five different images will
be simultaneously in flight.

There are three considerations for a Multi-CLP system to
achieve high throughput:

• The convolutional layers assigned to a CLP should have
dimensions compatible with the CLP dimensions to en-
sure high dynamic DSP utilization.

• The segment length, and thus the system throughput, is
limited by the CLP that takes the longest to complete
its assigned work. Ideally, each CLP is assigned work
proportional to its computation speed. For example, in
Figure 2, CLP0 is idle after it finishes L4 until the next
segment begins.

• The on-chip memory allocated to each CLP is inversely
related to the bandwidth it requires; larger CLP buffers
reduce off-chip data transfer.

TABLE I
OPTIMIZED SINGLE-CLP AND MULTI-CLP ACCELERATORS.

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 7 64 1a, 1b 14 19 366
2a, 2b 14 27 255
3a, 3b 13 13 169
4a, 4b 13 13 128
5a, 5b 13 13 85

Overall 2,006

(a) Single-CLP

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 3 24 1a, 1b 28 28 732

CLP1 8 19 2a, 2b 27 27 765

CLP2 7 32 3a, 3b 13 13 338
4a, 4b 13 13 256
5a, 5b 13 13 170

Overall 1,531

(b) Multi-CLP

IV. EVALUATION

We demonstrate our Multi-CLP CNN accelerator design of
AlexNet [3] on a Xilinx Virtex-7 485T FPGA and compare it
to [4]. Leveraging the aforementioned considerations, we use
an optimization method [5] to determine the best Multi-CLP
design that can be achieved with the available FPGA resources.

The resulting CNN accelerator for AlexNet comprises three
CLPs. CLP0 and CLP1 are responsible for processing AlexNet
layers one and two, respectively. CLP2 is responsible for layers
three, four, and five. We implement the Single-CLP and Multi-
CLP designs using Vivado HLS 2015.4.2, and use synthesis
and place and route tools to compare the two methods.
We report results using single-precision floating point and
a 100 MHz clock in order to compare directly with [4],
although Vivado HLS can reach much higher clock frequencies
for our design. Our results demonstrate that the Multi-CLP
accelerator has 1.3x higher throughput compared to the Single-
CLP design, with only a minor increase in the FPGA resource
consumption.

Table I presents the parameters of the Single-CLP and
Multi-CLP designs. Tn and Tm give the parallelism of the
compute module (Figure 1) and Tr and Tc control the on-chip
data tiling [4]. Because we use the design in [4] as the baseline
for our CLPs, our Single-CLP system has the same parameters,
Tn = 7 and Tm = 64, and the same speed, 2.0 million
cycles.1,2 Accenting the fairness of the comparison, we note
that the Single-CLP and Multi-CLP designs have the same
number of floating point multipliers and adders. Recall that a
CLP requires Tn×Tm multipliers and adders. Our Multi-CLP

1The cycle counts in [4] only account for half of the convolutional layers
(i.e., layers 1, 2, ..., 5, are each repeated twice per image, which we indicate
as 1a, 1b, etc.). We therefore double the cycle count in Table 4 of [4] to
compare with our implementation.

2We cannot verify Tr and Tc with prior work [4] as they are not reported.

TABLE II
PERFORMANCE AND RESOURCE USAGE FOR THE SINGLE-CLP (S-CLP)

AND MULTI-CLP (M-CLP) ACCELERATORS.

BRAM DSP FF LUT
DSP
Util.

Thr.
img/s

S-CLP 730 2,331 154,813 163,896 74.1% 49.85
(35%) (83%) (25%) (54%)

M-CLP 667 2,469 182,964 182,394 97.1% 65.32
(32%) (88%) (30%) (60%)

design uses the same number (3×24+8×19+7×32 = 448),
but distributes them over three different CLPs.

In the Multi-CLP design, the CLPs operate concurrently
on different input images. Thus the reported overall cycle
count is the maximum cycle count of its individual CLPs,
because this dictates the interval in which the pipelined Multi-
CLP accelerator is able to start a new image. To maximize
throughput, the Multi-CLP design is balanced, where each
CLP takes nearly the same number of cycles to execute all
assigned layers.

Table II shows the resource usage and performance of
each design. We see that the Multi-CLP system provides a
1.3x throughput advantage over the Single-CLP. Because both
designs use an equal number of floating-point arithmetic units,
the speedup is proportional to the improvement in dynamic
DSP utilization. The Single-CLP design is only able to provide
useful work to the DSP slices 74.1% of the time, while the
Multi-CLP design brings utilization up to 97.1%.

Table II also reports the sum of the resources used by each
of the designs. These values include the CLPs only, not any
platform-specific memory controllers, etc. We note that the
Multi-CLP implementation uses more DSP slices compared
to the Single-CLP design, even though their compute modules
(i.e., the arithmetic units used for the convolution’s multipli-
cations and additions) use the same number of DSPs. This is
because each CLP includes logic for address calculation and
loop indexing, adding approximately 6% more DSP slices to
the Multi-CLP system. Other small increases are seen in the
flip-flops and LUT counts, because adding more CLPs requires
additional logic beyond the DSPs and BRAMs. However, the
number of DSP limits the implementations significantly more
than the flip-flops or LUTs.

Further experiments [5] show that the benefits of the Multi-
CLP designs increase rapidly as the FPGA size increases,
growing to over 1.5x improvement on a larger Xilinx Virtex-7
and over 3x when targeting the resources that will be available
in the next generation of FPGAs.

V. RELATED WORK

Although we focus on the method of [4], other recent works
have proposed related types of CNN acceleration hardware,
with different ways of organizing compute units or interacting
with memory. For example, the 2D-convolvers used in [6]–
[9] must be as large as the largest filter in any of the CNN
layers; they will necessarily be underutilized when used to

compute any layer that has smaller filters. As another example,
in [10], the organization of the compute modules depends
on the number of output feature maps and their number of
rows. Because both of these parameters can change from
layer to layer, an analogous resource underutilization problem
occurs. In these cases, a Multi-CLP design can be employed
to improve resource utilization.

VI. CONCLUSIONS

The traditional approach to FPGA-based CNN accelerator
design uses a “one size fits all” approach, where a single
convolutional layer processor (CLP) is used to compute all
convolutional layers of the CNN. In this paper, we observed
that variation in the dimensions of the CNN layers limits
the throughput of the Single-CLP approach; on layers whose
dimensions are a poor fit for the CLP parameters, the arith-
metic units exhibit low dynamic utilization, where adders and
multipliers are frequently idle.

In this work, we proposed a Multi-CLP CNN accelerator
design that allows the CLP dimensions to more closely match
the CNN layer dimensions, resulting in better dynamic re-
source utilization and higher throughput. On the Virtex-7 485T
FPGA, we showed that a Multi-CLP accelerator yields a 1.3x
higher throughput compared to the state-of-the-art Single-CLP
design, improving the dynamic utilization of the arithmetic
units from 74.1% to 97.1%.

ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation under Grant Nos. 1533739 and 1453460.

REFERENCES

[1] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in Advances in Neural Information Processing
Systems, 2013, pp. 2643–2651.

[2] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. FPGA, 2015, pp. 161–170.

[5] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator effi-
ciency through resource partitioning,” arXiv preprint arXiv:1607.00064,
https://arxiv.org/abs/1607.00064.

[6] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Field Programmable Logic
and Applications, 2009, pp. 32–37.

[7] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Cu-
lurciello, “Hardware accelerated convolutional neural networks for syn-
thetic vision systems,” in ISCAS, 2010, pp. 257–260.

[8] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for convo-
lutional neural networks,” in Application-specific Systems, Architectures
and Processors, 2009, pp. 53–60.

[9] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-
ically configurable coprocessor for convolutional neural networks,” in
ACM SIGARCH Computer Architecture News, vol. 38, no. 3, 2010, pp.
247–257.

[10] M. Peemen, A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for convolutional neural networks,” in Computer
Design (ICCD), 2013, pp. 13–19.

