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Computer Generation of Hardware for Linear Digital Signal
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Linear signal transforms such as the discrete Fourier transform (DFT) are very widely used in digital signal
processing and other domains. Due to high performance or efficiency requirements, these transforms are
often implemented in hardware. This implementation is challenging due to the large number of algorithmic
options (e.g., fast Fourier transform algorithms or FFTs), the variety of ways that a fixed algorithm can be
mapped to a sequential datapath, and the design of the components of this datapath. The best choices depend
heavily on the resource budget and the performance goals of the target application. Thus, it is difficult for a
designer to determine which set of options will best meet a given set of requirements.

In this article we introduce the Spiral hardware generation framework and system for linear transforms.
The system takes a problem specification as input as well as directives that define characteristics of the
desired datapath. Using a mathematical language to represent and explore transform algorithms and data-
path characteristics, the system automatically generates an algorithm, maps it to a datapath, and outputs
a synthesizable register transfer level Verilog description suitable for FPGA or ASIC implementation. The
quality of the generated designs rivals the best available handwritten IP cores.
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1. INTRODUCTION

Linear signal transforms such as the discrete Fourier transform or discrete cosine
transform are ubiquitous in digital signal processing (DSP), scientific computing,
and communication applications. Fast algorithms for computing these transforms are
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highly structured and regular, and they exhibit large amounts of parallelism. For these
reasons, they are well suited for hardware implementation as sequential datapaths
on field-programmable gate arrays (FPGA) or application-specific integrated circuits
(ASIC). The regular structure in transform algorithms yields a large amount of free-
dom when mapping to a datapath. Given that multiple algorithmic options are typi-
cally available for a given transform, the combined algorithm/datapath space quickly
becomes far too large for a designer to explore easily.

Further, the algorithmic and datapath options are mutually restricting; the best
choice in one domain depends on which choices are made in the other. However, de-
signers typically do not have the tools available to jointly reason about both sets of
options. Moreover, the best choices for both algorithm and datapath structures are
highly dependent on the context—namely the application-specific performance goals
and cost requirements.

Typically, a designer attempting to build a customized hardware implementation of
a linear signal transform will alternate between (a) exploring different microarchitec-
tures to execute a given algorithm and (b) exploring algorithms to be executed on a
given type of microarchitecture. Either way, the designer reasons about one portion
of the problem while keeping an implicit mapping between algorithm and datapath
in his or her mind. This human-driven exploration process is difficult and slow, and
few designers have the required experience with both algorithm and hardware design
domains needed to arrive at the options best suited for their application requirements.
Often, they resort to using solutions from IP vendors that provide common designs
across a small number of cost/performance trade-off points. Many modern applications
in communications, image processing, and scientific computing require increasingly
high performance or more specialized implementations, and thus, prebuilt IP solutions
are frequently unsuitable.

In this article, we aim to solve these problems through automation. We introduce
the Spiral hardware generation framework and system which uses high-level mathe-
matical formalism to automatically generate customized hardware implementations of
linear signal transforms. The system covers a wide range of algorithmic and datapath
options and frees the designer from the difficult process of manually performing algo-
rithm and datapath exploration. The generated designs cover a wide cost/performance
trade-off space, are competitive with good hand-designed implementations, and are
scalable to reach high levels of performance. Due to the automation of the design pro-
cess, it becomes possible to easily explore and select from among a wide space of high
quality options.

The basic idea underlying the proposed system is a domain-specific formula-based
language for specifying transform algorithms and sequential datapaths on which to
execute them. This language extends the matrix formalism in Van Loan [1992] to in-
clude datapath concepts, such as parallelism and explicit datapath reuse, which the
designer specifies at a high level of abstraction. A single formula in this extended
language specifies one particular algorithm and one sequential datapath on which to
execute it.

The mathematical language drives a full compilation system that begins with a prob-
lem specification and produces a synthesizable register-transfer level Verilog descrip-
tion. This system takes a linear signal transform of a given size as input as well as
high-level hardware directives that describe features of the desired datapath. Then,
the system utilizes a base of algorithmic knowledge to construct a formula that spec-
ifies a transform algorithm. Next, the formula is rewritten (based on user-provided
directives) to produce a hardware formula that explicitly specifies a datapath with
sequential reuse of hardware structures. Lastly, the system compiles the hardware
formula to a corresponding synthesizable register-transfer level Verilog description.
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We include an evaluation of the generated designs across several transforms (such
as the discrete Fourier transform, discrete cosine transform, and others), multiple
datatypes, and two platforms: Xilinx FPGAs and a 65nm standard cell library for ASIC
implementation. The results show that Spiral is able to generate designs across a wide
range of cost/performance trade-offs and to match existing benchmarks where avail-
able.

In previous work, Spiral uses similar techniques to automatically produce software
implementations of signal transforms, including automatic parallelization and vector-
ization [Franchetti et al. 2006a; 2006b; Püschel et al. 2005].

The rest of this article is organized as follows. Section 2 describes relevant back-
ground material on linear transforms, their algorithms, and algorithmic specification
in the previously mentioned formula language. Then, Section 3 explains the proposed
mathematical formula language for describing sequentially reused datapaths. Next,
Section 4 outlines the automatic compilation process and describes each step from
transform to formula to hardware implementation. Section 5 evaluates the designs
produced with this methodology on FPGA and ASIC. Lastly, Section 6 examines re-
lated work, and Section 7 presents concluding remarks.

2. LINEAR TRANSFORMS AND ALGORITHMS

In this section, we present background material on linear transforms and fast algo-
rithms for their computation. In Section 2.1 we define linear transforms and give rel-
evant examples. Then we show in Section 2.2 how a mathematical formula language
can specify transform algorithms and how formulas can be translated to combinational
datapaths. Most importantly, the algorithm-specification language explicitly captures
regularity and repetition within algorithms.

2.1. Linear Transforms

A linear transform on n points is specified by a (typically) dense n×n matrix. Applying
the transform to an n point input vector is then a matrix-vector multiplication. For
example, the discrete Fourier transform on n points is defined as y = DFTn x, where x
and y are, respectively, n point complex input and output vectors, and

DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = e−2πi/n.

In this notation, DFTn is an n×n matrix, and k and ℓ are the row and column index of
a given element (respectively). For example, computing a four-point DFT (with input
vector x and output vector y) yields the following matrix-vector product.






y0

y1

y2

y3




 =






1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




 ·






x0

x1

x2

x3




 .
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Some important transforms used within this work include

DFTn =
[
ωkℓ

n

]

0≤k,ℓ<n
, ωn = e−2πi/n, (1)

DFT−1
n = IDFTn = (1/n) ·

[
ω−kℓ

n

]

0≤k,ℓ<n
, (2)

2D-DFTn×n = DFTn ⊗DFTn (3)

RDFTn =







1 1 1 1 . . . 1
1 −1 1 −1 . . . −1

,
[
cos 2πkℓ

n

sin 2πkℓ
n

]

0<k<n/2, 0≤ℓ<n







, (4)

DCT-2n =
[

cos k(2ℓ+1)π
2n

]

0≤k,ℓ<n
, (5)

where ⊗ is the tensor or Kronecker product, defined as

B ⊗ A = [bk,ℓA], where B = [bk,ℓ]. (6)

The tensor product replaces each entry bk,ℓ of matrix B with the matrix bk,ℓA. Equa-
tions (1) and (2) define the discrete Fourier transform and its inverse. The two-
dimensional DFT is given by Equation (3). Equation (4) defines a version of the real
discrete Fourier transform, and Equation (5) defines the discrete cosine transform of
type two.

2.2. Formula Representation of Transform Algorithms

Computing an n point transform by definition requires O
(
n2
)

arithmetic operations.

Fast transform algorithms enable computation using only O
(
n log n

)
arithmetic opera-

tions. The term fast Fourier transform (FFT) refers to such an algorithm for computing
the discrete Fourier transform, and many different FFTs exist. A fast transform algo-
rithm can be expressed as a decomposition of the n×n transform matrix into a product
of structured sparse matrices. For example, one FFT for four points can be expressed
as

DFT4 =






1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i











1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1











1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 . (7)

Thus, computing y = DFT4 ·x is equivalent to multiplying x by the four matrices from
right to left. More generally, the algorithms considered in this article decompose the
n×n transform matrix into a product of sparse matrices (O

(
log n

)
many), each of which

requires O
(
n
)

operations. Thus, the overall operation count is O
(
n log n

)
.

The Kronecker product formalism in Van Loan [1992] uses linear algebra concepts to
mathematically represent fast transform algorithms by capturing the structure within
the sparse matrices of the decomposition. This formalism serves as the basis for a
language that represents transform algorithms as formulas, where each term in the
formula has a corresponding dataflow interpretation. Thus, a formula in this language
can be directly translated into a combinational hardware implementation.

In Backus-Naur form, this language is defined as follows.

matrixn ::=matrixn · · ·matrixn

|
∏

ℓ matrixn

| Ik ⊗ matrixm where n = km
| Ik ⊗ℓ matrixm where n = km
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(a) An · Bn. (b) I2 ⊗ A2. (c) D4.

(d) P4 = L4
2. (e) A2 = DFT2.

(f) DFT4 = L4
2(I2 ⊗ DFT2)L4

2T 4
2 (I2 ⊗ DFT2)L4

2.

Fig. 1. Examples of formula elements and their corresponding combinational datapaths.

| basen

basen ::= Dn = diag(d0, . . . , dn−1) | Pn | An

This is a subset of the signal processing language (SPL) used in Spiral, a pro-
gram generator for software implementations of linear transforms [Püschel et al. 2005;
Xiong et al. 2001].

Next, we explain the language and illustrate the combinational hardware interpre-
tation of its elements in Figure 1.

Matrix product. A matrix formula can be decomposed into a product (line 1) or iterative
product (line 2) of matrix formulas. Figure 1(a) illustrates: if y = (AnBn) ·x, then input
vector x first is transformed by Bn, then by An to produce output vector y. Note that
the matrices are applied to the data vector from right-to-left.

The iterative product
∏

is important because it allows the explicit specification of
repeated stages that are identical or related. Section 3.2 discusses how we exploit this
repetition to represent explicit datapath reuse.

Tensor product. Line 3 shows that a matrix formula can include the tensor (or Kro-
necker) product of matrices, which was defined in Equation (6). Most importantly, if Ik
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is the k × k identity matrix, then

Ik ⊗ Am =







Am

Am

. . .
Am







is a km × km matrix that is block-diagonal (omitted entries are zero). If Ik ⊗ Am is
interpreted as dataflow, the Am matrix is applied k times in parallel to consecutive
regions of the km-length input vector. Figure 1(b) illustrates this for k = m = 2.

Line 4 illustrates an indexed version of the tensor product as

Ik ⊗ℓ A(ℓ)
m =









A
(0)
m

A
(1)
m

. . .

A
(k−1)
m









,

where ℓ is a parameter of the matrices A
(ℓ)
m . This construct has the same dataflow as

Ik ⊗ Am, but it allows for variation among the A blocks.
The regularity captured by Ik ⊗ Am is critical to the hardware generation and op-

timization method that we propose. In Section 3.1 we explain how this regularity is
exploited for explicit datapath reuse.

Diagonal matrices. Our language contains three classes of base matrices. First are di-
agonal matrices, written as

Dn = diag (d0, d1, . . . , dn−1) =







d0

d1

. . .
dn−1







,

where the dℓ are constants and omitted entries are zero. Multiplying a vector by Dn

means scaling each element by one constant. Figure 1(c) illustrates this for D4. A
diagonal matrix can be parameterized as in Dn,ℓ, where the values of the n constants
depend on ℓ.

Permutations. The second class of base matrices consists of permutations, or fixed re-
orderings of data elements. Pn denotes a permutation on n points. This is implemented
as a reordering of data by shuffling wires. Figure 1(d) illustrates this for a particular
permutation on four points. We use Pn to represent an arbitrary n point permutation;
other letters will be used to define specific permutations in transform algorithms. A
permutation can be viewed as a matrix or as a mapping on the indices of data ele-
ments. For example, Lmn

m represents the stride-m permutation on mn points, which
permutes data according to

Lmn
m : in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < m. (8)

Figure 1(d) illustrates L4
2.

Another important permutation is the base-r digit reversal permutation on n points:
Rn

r .

Rrt

r =

t−1∏

ℓ=0

(Irt−ℓ−1 ⊗ Lrℓ+1

r ). (9)

If r = 2, this permutation is called the bit reversal permutation.
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DFTrt =

 
t−1Y

ℓ=0

Lrt

r (Irt−1 ⊗ DFTr)C
(ℓ)

rt

!

Rrt

r , (11)

DFTrt = Lrt

r

 
t−1Y

ℓ=0

(Irt−1 ⊗ DFTr)
“

Irℓ ⊗
“

A
(ℓ)

rt−ℓ
Q

(ℓ)

rt−ℓ

””
!

Rrt

r , (12)

DFTn = Ln
rk (Isℓ ⊗ DFTrk )Ln

sℓT n
sℓ (Irk ⊗ DFTsℓ )Ln

rk , n = rksℓ, (13)

DFTn = Bn×m IDFTm Em DFTm Fm×n. (14)

2D-DFTn×n =
1Y

ℓ=0

“

(In ⊗ DFTn)Ln2

n

”

. (15)

RDFTn = Kn

“

In/4 ⊗ℓ H
(ℓ)
4

”

(Kn)−1DFTn/2, (16)

RDFTn = (DFT2 ⊕In−2) rDFT
(u)
n , (17)

rDFT
(u)
2km = V

(u)
2km

“

Ik ⊗ℓ rDFT
(f(u,ℓ))
2m

”“

rDFT
(u)
2k ⊗Im

”

, u 6= 0, (18)

rDFT
(0)
2km = W2km

0

@

logk m
Y

i=0

“

Im ⊗ℓ rDFT
(g(i,ℓ))
2k

”

L2km
2m

1

AL2km
km , (19)

rDFT
(0)
2km = W2km

0

@

logk m
Y

i=0

“

Im/ki ⊗ X
(i)

2ki+1

” “

Im ⊗ℓ rDFT
(h(i,ℓ))
2k

”
!

L2km
m . (20)

DCT-22k =

r
2

2k
U2k

0

@

0Y

s=k−1

G
(s)

2k
(I2k−s−1 ⊗ L2s+1

2s )

1

AK2k . (21)

Fig. 2. Transform algorithms (written in SPL) used in this work.

Computational kernels. The final class of base matrices consists of computational ker-
nels. Matrix An denotes a generic n × n computational kernel that takes in n data
elements and produces n output elements. Typically, such a kernel is only used when n
is small; a combinational datapath is then formed by directly interpreting the matrix
as computational elements. One example of such a kernel is

DFT2 =

[
1 1
1 −1

]

,

which is illustrated in Figure 1(e).

Example. A linear transform algorithm specified in this language can be directly
mapped to a combinational datapath. For example, the Cooley-Tukey FFT (fast Fourier
transform) [Cooley and Tukey 1965] on four points can be written as

DFT4 = L4
2(I2 ⊗ DFT2)L

4
2T

4
2 (I2 ⊗ DFT2)L

4
2, (10)

where L is the stride permutation of Equation (8) and T is a diagonal matrix of “twid-
dle factors” as specified in Johnson et al. [1990]. Note that this formula is equivalent to
the matrix representation seen in Equation (7).1 Figure 1(f) shows the corresponding
combinational datapath for this algorithm. Again, note that the formula is read from
right-to-left.
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2.3. Algorithms

Although SPL is restricted in the type of computations it can represent, it is able
to specify a very wide range of transform algorithms. In Figure 2, we show (with-
out complete specification) the algorithms used within this work. In these formulas,
K,L,Q,R, S, U, V,W , and X are permutation matrices; A,B,C,E, and F are diagonal
matrices; H and G are basic blocks; and f(), g(), and h() are indexing functions. Full
specifications of these algorithms are available in the following citations or in Milder
[2010].

First, Algorithms (11)–(14) compute the discrete Fourier transform. Respectively,
they are the Pease FFT [Pease 1968], an iterative variant of the Cooley-Tukey
FFT [Cooley and Tukey 1965], the mixed-radix FFT (also derived from Cooley and
Tukey [1965]), and the Bluestein FFT [Bluestein 1970].

Algorithm (15) is the row-column algorithm for computing the two-dimensional DFT
as several one-dimensional DFTs; it is derived from the definition of the transform.

Algorithms (16)–(20) are used in computing the real discrete Fourier transform, or
RDFT. First, as shown in Voronenko and Püschel [2009], Algorithm (16) computes
RDFTn by first computing DFTn/2 followed by a postprocessing step. Algorithm (17),
which uses helper Algorithms (18)–(20), is a native RDFT algorithm that we have
derived using the framework in Voronenko and Püschel [2009].

Lastly, Algorithm (21) is an algorithm for the discrete cosine transform of type 2
given in Nikara et al. [2006].

3. FORMULA-BASED DATAPATH REPRESENTATION

The language described in the previous section (SPL) can represent a wide range of
algorithms but not implementation decisions, such as the sequential reuse of data-
path components, where one computational block is used multiple times during the
computation of a single transform. Sequential reuse is necessary since combinational
datapaths, such as Figure 1(f), are too large for practical implementation for all but
the smallest transform sizes. This section describes our extension to the SPL formula
language that allows it to represent two types of sequential reuse that are relevant
for hardware designs. The result is a hardware language we call Hardware SPL (or
HSPL) that enables explicit datapath description at the formula level. Later, we show
how this extended language drives our proposed compilation system, allowing the de-
scription and generation of a wide trade-off space. The work described in this section
was presented in part in Milder et al. [2008].

3.1. Streaming Reuse

Streaming reuse restructures a datapath with parallelism into a smaller datapath
where data elements stream through the system over multiple cycles.

As shown in Section 2.2, the tensor product Im ⊗ An results in m data-parallel in-
stantiations of block An, as shown in Figure 3(a). However, other structures can also
perform the same computation. For example, the tensor product can be interpreted as
reuse in time (rather than parallelism in space). Then, one can build a single instance
of block An and reuse it over m consecutive cycles (Figure 3(b)). Rather than all mn
input points entering the system concurrently, they now stream in and out at a rate
of n per cycle. We call this streaming reuse and write Im ⊗sr An. We define streaming
width to indicate the number of inputs (or outputs) that enter (or exit) a section of
datapath during each cycle. Here, the streaming width is n.

1Note that the leftmost matrix in Equation (7) corresponds to L4
2(I2 ⊗ DFT2)L4

2.
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n

size

 n)

vector 

n

n

..
. ...

...

(a) No streaming reuse (width = mn):
Im ⊗ An.

words

er cycle

… 

m cycles

size (m × n)

...

(b) Full streaming reuse (width = n):
Im ⊗sr An.

n … 

mn/w cycles

n … 

..
.words

er cycle
...

...

...

(c) Partial streaming reuse (width = w): Imn/w ⊗sr
`
Iw/n ⊗ An

´
.

Fig. 3. Examples of streaming reuse.

The two interpretations of ⊗ can be nested in order to build a partially parallel
datapath that is reused over multiple cycles (Figure 3(c)). In general, Im ⊗ An can
be written as Imn/w ⊗sr (Iw/n ⊗ An), which results in a datapath with a streaming
width of w, consisting of w/n parallel instances of An, reused over mn/w cycles (w is a
multiple of n; w ≤ mn). Increasing the streaming width increases the datapath’s cost
and throughput roughly proportionally.

Indexed tensor product. Streaming reuse can also be applied to the indexed tensor prod-
uct

Im ⊗ℓ A(ℓ)
n ,

where A is an n × n matrix parameterized by ℓ. When this construct is streamed with

width w = n, one computational block is built that is capable of performing all A
(ℓ)
n ,

0 ≤ ℓ < m. In the worst case, this can lead to an overhead of roughly a factor of m, if the
m instances cannot share logic between them. However, often this hardware block can
be simplified. For example, an algorithm for DCT-2 presented in Nikara et al. [2006]
contains the term

(I2k−1 ⊗ℓ M
(s,ℓ)
2 ),

where

M
(s,ℓ)
2 =

[
1 0

−µs(ℓ) 1

]

, µs(ℓ) =

{
0, ℓ mod 2s = 0,

1, ℓ mod 2s 6= 0
.

When streaming reuse is applied to this formula, only two possible instances of M need
to be considered: one that is equivalent to I2 and one that performs one subtraction. In
hardware, this can be realized as one subtractor and one multiplexer, controlled based
on ℓ.
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...

w parallel RAMs,

2n/w words each

address logic

w
-to
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w
 co
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ectio

n
 

n
etw
o
rk

control 

logic

w
-to
-
w
 co
n
n
ectio

n
 

n
etw
o
rk

control 

logic

Fig. 4. Streaming permutation on n points with streaming width w.

Diagonal matrices. Diagonal matrices scale each data element by a constant. An n
point diagonal can easily be streamed with width w by building w multipliers, each
holding its own lookup table of n/w constants.

We can write this as a streaming reuse formula by reformulating the expression into
one that uses I⊗ℓ. So, a diagonal Dn with streaming width w can be expressed as

In/w ⊗sr
ℓ D′(ℓ)

w , (22)

where D
′(ℓ)
w = diag(dℓw, . . . , d(ℓ+1)w−1) is the ℓ-th w×w subdiagonal of Dn. In hardware,

the variable ℓ is provided by a counter to determine which submatrix to use for each
cycle.

This is implemented in hardware by splitting the Dn into w partial lookup tables.
Each holds the values that will be multiplied with data from one of the w input ports.
This representation also allows for easy simplification in the case of suitable repeated
patterns within the diagonal matrix. For example, every other element of the twid-
dle diagonal Tn

2 is equal to 1. So, when this diagonal is streamed (with a two-power
streaming width w), half of the corresponding multipliers will always multiply by 1.
Using this representation makes this situation (and similar ones) easy to recognize
within the compiler, allowing for automatic removal of unneeded multipliers.

Permutation matrices. Implementing streaming reuse of permutation matrices is a dif-
ficult problem, but one that is crucially important for construction of linear transform
hardware. A streaming permutation matrix describes how data must be routed be-
tween computational elements in space and in time. That is, a permutation streamed
at width w must take in an n point input vector at a rate of w words per cycle. It must
buffer the data stream, perform a reordering over the entire set of n data points, and
then stream the data vector out without stalling. In general, designing these systems
is a difficult problem because it requires the designer to partition the incoming data
into multiple banks of memory while guaranteeing that there will be no conflicts (when
two words must be read from or written to the same memory at the same time).

We have developed two methods for automatically implementing streaming permu-
tations that fit our requirements [Püschel et al. 2009; Milder et al. 2009]. The former
applies to a subset of streaming permutations but produces designs that are optimal
in the complexity of the control logic and in the number of switching elements (for a
subset of its supported problems). The latter produces designs that are more expen-
sive, but the technique is applicable to any streaming permutation. Figure 4 shows
an example of a permutation on n points with streaming width w, using the former
technique.
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… 

m blocks

(a) No iterative reuse (depth = m):
Q

m An.

1 block, reused 

(b) Full iterative reuse (depth = 1):
Qir

m An.

… 

m blocks

(c) Partial iterative reuse (depth = d):
Qir

m/d

`Q

d An
´
.

Fig. 5. Examples of iterative reuse.

Other approaches, such as the FIFO-based methods for data permutation and rout-
ing seen in Järvinen et al. [2004] or Zapata and Argüello [1992] can be used here
instead of our approach. We have currently included an implementation of Järvinen
et al. [2004] as an alternative in our framework. (We compare our streaming permuta-
tions with other approaches [Püschel et al. 2009].)

In this article, we use the notation
−→
Pn

w
to represent a permutation on n points Pn

streamed with width w. If the streaming width can be inferred from the surrounding
formula, the parameter w may be omitted.

3.2. Iterative Reuse

The product of m identical blocks An can be written as
∏

m An. A straightforward in-
terpretation of this is a series of m cascaded blocks, as shown in Figure 5(a). However,
the same computation can be performed by reusing the An block m times (Figure 5(b)).
Now the datapath must have a feedback mechanism to allow the data to cycle through
m times. We call this iterative reuse and represent it by adding the letters “ir” to the

product term:
∏ir

m An. By nesting both kinds of product terms, the formula specifies a
number of cascaded blocks to be reused a number of times (Figure 5(c)). In general,
∏

m An can be restructured into
∏ir

m/d(
∏

d An), resulting in d cascaded instances of An

iterated over m/d times (where m/d is an integer). The term depth is used to indicate
the number of stages built (here, d).

When a datapath with iterative reuse is built, it is important that the reused portion
of the datapath buffers the entire vector, so the “head” of the data vector does not feed
back too soon and collide with its own “tail.” This is equivalent to requiring that the
latency (in cycles) be at least 1/(its throughput in transforms per cycle). If the datapath
does not naturally have this property, it is necessary to add buffers to increase its
latency.
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Table I. Formulas for Latency L(F ), Throughput T (F ), and Approximate Area C(F )

Formula F Latency L(F) Throughput T(F) Area C(F)

Fn = A
(0)
n · · ·A

(m−1)
n

P

i(L(A
(i)
n )) min(T (A

(i)
n ))

P

i(C(A
(i)
n ))

Fn =
Qir

k An max
“

k
T (An)

, k · L(An)
”

min
“

T (An)
k

, 1
k·L(An)

”

C(An) + C(mux)

Fmn = Im ⊗ An L(An) T (An) m · C(An)

Fmn = Im ⊗sr An L(An) T (An)/m C(An)

Dependence on the iteration variable. Iterative reuse can also be applied to the iterative
product

m−1∏

ℓ=0

A(ℓ)
n ,

where the n×n matrix A
(ℓ)
n is parameterized by variable ℓ. If this formula is iteratively

reused with depth d = 1, then one computational structure capable of performing all

of the variants of A
(ℓ)
n (where 0 ≤ ℓ < m) is constructed. In the worst case, m different

independent blocks must be built, but often the structure of the algorithm allows these
blocks to be simplified by sharing logic or arithmetic units (for example, in constant
geometry algorithms such as the Pease FFT [Pease 1968]). This situation is analogous
to streaming reuse of the indexed tensor product in Section 3.1.

Diagonal matrices. Diagonal matrices are often used in product terms with a depen-
dence on the iteration variable such that

m−1∏

ℓ=0

D(ℓ)
n .

This formula can be iteratively reused by storing all mn constants, and adding simple
logic to choose from the correct n depending on the value of ℓ. This also works in the

streaming case, where it can be written as
∏

In/w ⊗sr
k D

′(k,ℓ)
w .

Permutation matrices. Similar to diagonal matrices, iterative reuse can also be
applied to permutations. If streaming reuse is not used, then this simply is an instance
of the generic dependence on the iteration variable discussed previously. When both
streaming and iterative reuse are used, the formula becomes

m−1∏

ℓ=0

ir
(−−→

P (ℓ)
n

w
)

,

and the streaming permutation implementation (discussed in Section 3.1) must be
extended to support multiple permutations at different times.

3.3. Formula-Based Hardware Model

Given a matrix formula F , Table I provides formulas for computing the latency L(F )
(cycles), the throughput T (F ) (in transforms per cycle), and an approximate area cost
C(F ) from the latency, throughput, and relative to the area of F ’s submodules. The en-
tries of this table can be recursively used to reason about complex formulas containing
streaming and iterative reuse.

3.4. Combining Streaming and Iterative Reuse

Often, transform algorithms contain the substructure
∏

k(Im⊗An). This structure can
utilize both iterative reuse (due to the

∏
) and streaming reuse (due to Im⊗), thus
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allowing for a wide range of hybrid implementations that vary in two dimensions. For-
mally, this is captured by restructuring this formula to have streaming and iterative
reuse of parameterized amounts such that

k/d−1
∏

ℓ0=0

ir

(
d−1∏

ℓ1=0

(Inm/w ⊗sr (Iw/n ⊗ An))

)

,

where d is the depth of the cascaded stages (ranging from 1 to k where k/d must be an
integer). Parameter w is the streaming width, a multiple of n.

This parameterized datapath is illustrated in Figure 6. Each stage consists of w/n
parallel instances of An; d stages are built in series. Let Bmn represent this array of
dw/n many An blocks. Data are loaded into the cascaded stages at a rate of w per cycle
over mn/w cycles. The vector feeds back and passes through the series of stages a total
of k/d times.

Latency and throughput. Given this combined reuse example, we can use the structure
of the formula to analyze the effect of parameters d and w on the datapath. The fol-
lowing are calculations that correspond to evaluating the general rules from Table I
for the specific parameters of this example (Figure 6). These calculations assume that
Bmn (the collective group of An blocks) is fully pipelined, that is, its throughput is dic-
tated by the problem size and streaming width only: T (Bmn) = w/mn. The analysis
of latency and throughput for this combined reuse example includes the following two
cases.

— Case 1: Iterative reuse. This case occurs when d < k, meaning the data will iterate
over the internal block at least two times. As discussed in Section 3.2, the internal
block’s minimum latency is determined by its throughput. So if d · L(An) < mn/w,
buffers are added until they are equal. Thus, internal block Bmn has latency
L(Bmn) = max(mn/w, d · L(An)). The latency of the whole system is k/d times this,
giving latency = max(mnk/dw, k · L(An)). Because this datapath utilizes iterative
reuse, a new vector cannot enter until the previous vector begins exiting the
datapath, so the throughput (in transforms per cycle) is the inverse of the latency,
min(dw/mnk, 1/(k · L(An))).

— Case 2: No iterative reuse. This case occurs when d = k. Now no iterative reuse is
performed; the data only pass through the inner block once. The datapath consists
of d = k stages, giving latency = k · L(An). Because the data never feeds back, the
throughput is limited only by the streaming width, giving throughput = w/mn trans-
forms per cycle.

These equations show that increasing w and d will lead to lower latency and higher
throughput in equal weights, until either the data flows so quickly that the latency of
the computation dominates (d · L(An) > mn/w), or d increases until no iterative reuse
is performed (d = k).

Flexibility. Additionally, there is one important difference between the parameters d
and w: as w grows, the datapath requires greater bandwidth at its ports, and the cost
of interconnect and multiplexers increases. In the simple example considered here,
a design with w = 2, d = 16 will have roughly the same cost and performance as a
design with w = 16, d = 2, but the latter will require a bandwidth of 16 words during
loading and unloading phases, while the former only requires two words per cycle (over
eight times the number of cycles). For this reason, it is usually preferable to increase
d instead of w. However, d must divide k evenly (k is typically the log2 of the transform
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n … 

mn/w cycles

n … 

..
.words

er cycle

… 

m blocks

Fig. 6. Combining iterative and streaming reuse:
Qir

k/d

`Q

d(Inm/w ⊗sr (Iw/n ⊗ An))
´
.

size). In many cases, this becomes an all-or-nothing situation in which the only options
are d = 1 and d = k. In those cases, the added flexibility provided by w is important.

Lastly, when the datapath does not employ iterative reuse (i.e., when d = k), the
designer typically has a wider choice of algorithms, because the internal stages are not
required to be uniform. This can lead to substantial cost savings.

3.5. Hardware SPL

Using the concepts explained in this section, we extend SPL to explicitly describe
sequential-reuse hardware structures. We call this extended language Hardware SPL
(HSPL). HSPL is comprised of SPL, as defined in Section 2.2, with the addition of I⊗sr,

I⊗sr
ℓ ,
∏ir

ℓ , and streaming permutations
−→
Pn

w
. A formula in SPL describes a transform

algorithm, while a formula in HSPL describes a transform algorithm realized as a
specific sequential datapath.

In the following section, we show how Spiral automatically translates an SPL for-
mula into HSPL, based on user-specified directives, and how that HSPL formula is
then compiled into a register-transfer level Verilog description.

4. AUTOMATIC COMPILATION FROM FORMULA TO DATAPATH

In Section 2, we presented a mathematical language for describing linear transform
algorithms (SPL); in Section 3, we extended that language to explicitly specify sequen-
tial reuse when mapping to a datapath (HSPL). Now we describe how HSPL is used to
drive an automatic compilation framework that maps a transform first to an algorith-
mic formula, then to a formula that includes the desired streaming and iterative reuse
characteristics, and finally to a register-transfer level (RTL) Verilog description.

Figure 7 shows a high-level view of each of the steps in this compilation process.
First, a transform enters the system, an algorithm is selected, and a formula repre-
sentation of that algorithm is produced in SPL. Then, formula rewriting is used to
apply iterative reuse and streaming reuse to the formula; the resulting hardware for-
mula (i.e., a formula in HSPL) now has explicit sequential reuse. Lastly, the hardware
formula is then translated into a register-transfer level (RTL) Verilog description. We
explain each of these steps in the following sections.

4.1. Hardware Directives

This system uses hardware directives to include information about the desired features
of the hardware implementation to be produced by the compilation framework. Hard-
ware directives are tags placed around a formula or portion of a formula. This work
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Formula Generation

Formula Rewriting

RTL Generation

transform

algorithm as formula
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RTL Verilog

hardware

directives

Fig. 7. Block diagram of hardware compilation system.

utilizes two directives. First, the streaming tag indicates streaming reuse, as shown by

An
︸︷︷︸

stream(w)

.

This indicates that the contents of A should be restructured such that the resulting
hardware formula will be implemented in a block that contains w input and output
ports, with data streamed at w elements per cycle, over n/w cycles.

Next, the depth tag indicates whether to employ iterative reuse (and of what depth),
as shown by

An
︸︷︷︸

depth(d0,d1,... )

.

This tag indicates that the contents of An should be modified so that the top most
∏

be restructured to have iterative reuse with depth d0, its next nested
∏

with depth d1,
and so on. Both tags may be used at once.

4.2. Formula Generation: From Transform to Algorithm

The formula generation stage takes a transform of a fixed size as input. It then selects
and combines transform algorithms and outputs an SPL formula that specifies the
final complete algorithm. This portion of the compilation framework is implemented
inside of Spiral [Püschel et al. 2005].

The system represents each algorithm shown in Figure 2 as a parameterized for-
mula. Further, for each algorithm, we include a set of conditions under which it may
be applied, as well as guidance rules that choose appropriate algorithms for the re-
quested hardware directives. (We give an example of this below.) Other algorithmic
choices, such as the desired radix, can also be specified by the user at this time, which
sets parameters seen in the formulas of Figure 2 (e.g., parameter r in Algorithm (11)).

We constructed this stage by expanding Spiral’s algorithm specifications to include
all algorithms in Figure 2 and added guidance rules where needed.

Example. For example, if the desired transform is a 128-point discrete Fourier trans-
form with radix 2, width 4, and depth 1, that is,

DFT128
︸ ︷︷ ︸

stream(4), depth(1)

,
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our guidance rules select the Pease FFT Algorithm (11), which is our system’s best
FFT algorithm when mapping to iterative reuse. This produces

(
6∏

ℓ=0

L128
2 (I64 ⊗ DFT2)C

(ℓ)
128

)

R128
2

︸ ︷︷ ︸

stream(4), depth(1)

,

where C is a diagonal matrix and L and R are permutations, defined in Equations (8)
and (9), respectively.

Alternatively, the user could specify depth 7, producing

DFT128
︸ ︷︷ ︸

stream(4), depth(7)

→ L128
2

(
t−1∏

ℓ=0

(I64 ⊗ DFT2)
(

I2ℓ ⊗
(

E
(ℓ)

27−ℓ · Q
(ℓ)

27−ℓ

))
)

R128
2

︸ ︷︷ ︸

stream(4), depth(7)

,

which utilizes (12), our system’s best algorithm for fully streaming FFTs. (Here E is a
diagonal matrix and Q is a permutation. A full definition of this algorithm is available
in Milder [2010].)

Lastly, the user could specify radix 4 and depth 3, and the system would first use the
Mixed-Radix Algorithm (13) to decompose the DFT128 into DFT64 and DFT2. Then it
would use the Iterative algorithm to implement DFT64, producing

DFT128
︸ ︷︷ ︸

stream(4), depth(3)

→ L128
64 (I2 ⊗ DFT64)L

128
2 T 128

2 (I64 ⊗ DFT2)L
128
64

︸ ︷︷ ︸

stream(4), depth(3)

,

where DFT64 is decomposed as

DFT64 → L64
4

(
2∏

ℓ=0

(I16 ⊗ DFT4)
(

I4ℓ ⊗
(

E
(ℓ)

43−ℓ · Q
(ℓ)

43−ℓ

))
)

R64
4 .

At this point, all algorithmic choices have been made, and our requested sequential
reuse properties are reflected in tags placed around the formula. Next, we will use
formula rewriting to automatically convert our tagged formula (SPL) into a hardware
formula (HSPL) based on the provided tags.

4.3. Formula Rewriting: Algorithm to Hardware Formula

Next, the SPL formula (representing an algorithm) enters the formula rewriting stage,
which takes the formula plus hardware directives and produces a hardware formula
in HSPL. The output of this stage corresponds directly to a sequential hardware im-
plementation.

The compilation framework accomplishes this restructuring using a rewriting sys-
tem [Dershowitz and Plaisted 2001] that takes in a tagged formula and uses a set of
rewriting rules to restructure the formula as dictated by the tag. The hardware for-
mula that is the end result of this stage contains no remaining tags.

In addition to implementing streaming and iterative reuse, rewriting rules within
this section of the compiler perform simplifications and optimizations to improve the
quality of the generated design.

4.3.1. Rewriting for Streaming Reuse. Table II lists the rewriting rules that the system
utilizes for streaming reuse. Each rule takes a formula construct with the stream tag,
and either rewrites the formula to implement streaming or pushes the tag inward to
be processed at the next level. Each of the rules has a simple explanation.
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Table II. Rewriting Rules for Streaming Reuse

name rule condition

base-SR An
|{z}

stream(n)

→ An

product-SR AnBn · · ·Zn
| {z }

stream(w)

→ An
|{z}

stream(w)

· Bn
|{z}

stream(w)

· · · Zn
|{z}

stream(w)

stream-IR
Yir

An

| {z }

stream(w)

→
Yir

An
|{z}

stream(w)

stream1 Im ⊗ Ak
| {z }

stream(w)

→ Imk/w ⊗sr
`
Iw/k ⊗ Ak

´
if mk > w and k ≤ w

stream1-dep Im ⊗ℓ A
(ℓ)
k

| {z }

stream(w)

→ Imk/w ⊗sr
ℓ0

“

Iw/k ⊗ℓ1 A
(ℓ0·

w

k
+ℓ1)

k

”

if mk > w and k ≤ w

stream2 Im ⊗ Ak
| {z }

stream(w)

→ Im ⊗sr Ak
|{z}

stream(w)

if k > w

stream2-dep Im ⊗ℓ A
(ℓ)
k

| {z }

stream(w)

→ Im ⊗sr
ℓ A

(ℓ)
k
|{z}

stream(w)

if k > w

stream-diag Dn
|{z}

stream(w)

→ In/w ⊗sr
ℓ D

′(ℓ)
w if w | n

stream-perm Pn
|{z}

stream(w)

→
−→
Pn

w
if w | n

Note: Expression w | n indicates that w evenly divides n.

— base-SR. If the size of a matrix is the same as the desired streaming width, the
stream tag is not necessary and can be dropped.

— product-SR. If a product of matrices is tagged for streaming, the stream tag is prop-
agated to each individual matrix.

— stream-IR. Similarly, a stream tag is propagated into the inner term of an iterative
reuse product.

— stream1 and stream1-dep. If the size of A is less than or equal to the streaming width,
these rules unroll the inner tensor product to match the stream’s width. If A depends
on index variable ℓ, the same rewriting is performed except the dependence must
now change to include two index variables ℓ0 and ℓ1.

— stream2 and stream2-dep. If the size of A is larger than the size of the stream, the
tag is propagated inward, and another rule must restructure A to the right streaming
width.

— stream-diag. A diagonal to be streamed is rewritten into the streaming diagonal form
of Equation (22) as described in Section 3.1.

— stream-perm. A permutation to be streamed is placed in a streaming permutation
wrapper, and will be implemented in hardware as discussed in Section 3.1.
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Table III. Rewriting Rules for Iterative Reuse

name rule condition

base-IR An
|{z}

depth(d0,... )

→ An Ak contains no
Q

drop-tag-IR An
|{z}

depth()

→ An depth tag empty

product-IR

m−1Y

ℓ=0

An

| {z }

depth(d0,d1,... )

→

(m/d0)−1
Y

ℓ=0

ir

0

B
@

d0Y

k=0

An
|{z}

depth(d1,... )

1

C
A m/d0 integer

product-IR-dep

m−1Y

ℓ=0

A
(ℓ)
n

| {z }

depth(d0,d1,... )

→

(m/d0)−1
Y

ℓ=0

ir

0

B
B
@

d0Y

k=0

A
(ℓ·d0+k)
n
| {z }

depth(d1,... )

1

C
C
A

m/d0 integer

4.3.2. Rewriting for Iterative Reuse. Table III lists the rewriting rules used for iterative
reuse.

— base-IR. If the formula tagged with a depth tag does not contain any product terms,
the depth tag is unneeded.

— drop-tag-IR. When the depth tag does not have any terms left in its list, it is dropped
because it no longer holds any directives.

— product-IR and product-IR-dep. When a product term with a depth tag is encoun-
tered, iterative reuse is applied with an inner product of the given depth (here, d0).
The first term (d0) is then removed from the tag, and the tag is propagated inward.
Similarly, if the inner formula of a product term has a dependence on the iteration
variable, the same process occurs, except the iteration dependence must combine the
two product variables ℓ and k.

Like the formula generation stage, this portion of the compilation framework is also
implemented inside of Spiral.

4.4. RTL Generation: Hardware Formula to RTL Verilog

The RTL generation stage takes in a hardware formula (HSPL) and produces a synthe-
sizable register-transfer level (RTL) Verilog description of the corresponding datapath.
This portion of the compilation framework is partially implemented inside Spiral and
partially implemented as a standalone backend that runs alongside Spiral.

The majority of the formula constructs in HSPL are mapped to hardware in a
straightforward fashion, as described in Section 3. However, a few constructs present
additional challenges, which we describe here.

Basic Blocks. Any portion of the formula without iterative reuse, streaming reuse, or
explicit sequential meaning (e.g., streaming permutations) is considered a computa-

tional basic block, written An or A
(ℓ)
n . These blocks can automatically be mapped into

a combinational datapath, as discussed in Section 2.2. When the compiler encounters
a basic block, it constructs a hardware datapath and automatically pipelines it by in-
serting staging registers. (This pipelining can easily be tuned within the compiler.)
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Lastly, additional buffers are added if needed to guarantee that corresponding data
words reach the output ports together in the same cycle.

When the block includes dependence on an index variable A
(ℓ)
n , the compiler deter-

mines the possible values for ℓ, and constructs hardware for each, as well as a counter
to provide the values of ℓ as computation progresses. The compiler attempts to simplify
the datapaths as much as possible by reducing the dependency on ℓ to the smallest seg-
ments possible.

Iterative Reuse. As shown in Figure 5(c), an iterative reuse structure
∏k−1

ℓ=0

ir
Am is built

with an input multiplexer and feedback loop. In addition, it is necessary to ensure that
the latency through the iteratively reused block Am is sufficient to prevent the vector’s
head from colliding with its own tail at the input multiplexer (see Section 3.2). So,
the compiler must determine the latency (in cycles) through Am and (if necessary) add
additional buffering.

Other Functionality of the RTL Generation Stage. In addition to translating the hardware
formula into an RTL description, the RTL generation stage includes added functional-
ity. For example, latency and throughput (relative to the cycle time) are computed for
all blocks and can be reported at the top level or any level below. Other options include
basic cost reporting (e.g., counting the numbers and size of RAMs, ROMs, and arith-
metic units). In previous work [Milder et al. 2006], we created and calibrated an FPGA
area model for a subset of the design space considered here. Such an approach could
be extended to produce an accurate area model for the full design space. Lastly, the
generator is also able to include basic Verilog testbenches for any design it generates.

4.5. Example: Fast Fourier Transform

This section provides an example of the formula rewriting and compilation used when
generating implementations of the discrete Fourier transform.

As shown in Algorithm (11), the Pease FFT algorithm with radix r is given by

DFTrt =

(
t−1∏

ℓ=0

Lrt

r (Irt−1 ⊗ DFTr)C
(ℓ)
rt

)

Rrt

r ,

where C is a diagonal matrix, and L and R are permutation matrices. All of its terms
can be used with streaming reuse: the permutations and diagonals as described pre-
viously, and the tensor product Irt−1 ⊗ DFTr can be restructured to any width w such
that w is a multiple of r, and w evenly divides rt−1.

In general, larger values of radix r reduce the computational cost (by reducing the
number of multiplications performed). However, this comes at the cost of reduced flexi-
bility, since the streaming width w must be ≥ r. The evaluations in Section 5 illustrate
the effects of varying the radix of this and other algorithms.

This algorithm is a good candidate for iterative reuse, since it only depends on the
product term’s index ℓ in the parameter to the diagonal matrix C, which can be imple-
mented as described in Section 3.2. It can be iteratively reused with depth d, where
d | t (that is, d evenly divides t).
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(a) No sequential reuse.

(b) Streaming width w = 2.

(c) Streaming width w = 4.

(d) Streaming width w = 2, depth d = 1.

Fig. 8. Pease FFT: DFT23 .

So this algorithm can be tagged and restructured automatically to have streaming
width w and depth d in the following manner.

DFTrt

︸ ︷︷ ︸

stream(w), depth(d)

→

(
t/d−1
∏

k=0

ir

(
d−1∏

ℓ=0

−→
Lrt

r (Irt/w ⊗sr (Iw/r ⊗ DFTr))

·
(

In/w ⊗sr
m C ′(m,kd+ℓ)

w

)
))

−→
Rrt

r .
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Both permutations used here (stride permutation L and digit-reversal permutation
R) are implemented using Püschel et al. [2009] when r is a power of two and Milder
et al. [2009] when it is not.

For example, consider DFT23 . First, the radix 2 Pease FFT (11) gives the formula

(
2∏

ℓ=0

L8
2(I4 ⊗ DFT2)C

(ℓ)
8

)

R8
2,

which is illustrated in Figure 8(a) as hardware with no sequential reuse. The 8 point
input vector x enters on the left and flows through the datapath, producing output
vector y on the right. (Recall, the formula is read and implemented from right to left.)
At the bottom of the diagram, each portion of the datapath is annotated with the ma-
trix that describes its computation. The shaded boxes illustrate the three stages of the

product term. Note that C
(2)
8 = I8, so its section of the datapath performs no computa-

tion.
Next, we can apply streaming reuse to this formula. For example, at width w = 2:

DFT23

︸ ︷︷ ︸

stream(2)

→

(
2∏

ℓ=0

−→
L8

2 (I4 ⊗
sr DFT2)

(

I4 ⊗
sr
m C

′(m,ℓ)
2

)
)

−→
R8

2 .

This is illustrated in Figure 8(b). As before, the three stages are enclosed in shaded
blocks. Now the permutations are drawn as blocks with two inputs and two outputs,
reflecting their streaming width of w = 2. The multipliers used for the diagonal ma-
trices now have lookup tables attached, because different constants are needed for
different portions of the stream. The input x flows in at a rate of w = 2 words per cycle,
then flows through input permutation R8

2, before passing through the three stages and
exiting as y. A new input vector can begin entering the system as soon as the previous
one has finished loading.

Alternatively, if the user had requested streaming width w = 4, we would have

DFT23

︸ ︷︷ ︸

stream(4)

→

(
2∏

ℓ=0

−→
L8

2 (I2 ⊗
sr (I2 ⊗ DFT2))

(

I2 ⊗
sr
m C

′(m,ℓ)
4

)
)

−→
R8

2 ,

which is illustrated in Figure 8(c).
Next, we can apply iterative reuse with depth d = 1 and with streaming reuse w = 2

such that

DFT23

︸ ︷︷ ︸

stream(2), depth(1)

→

(
2∏

ℓ=0

ir−→
L8

2 (I4 ⊗
sr DFT2)

(

I4 ⊗
sr
m C

′(m,ℓ)
2

)
)

−→
R8

2 .

Figure 8(d) shows the resulting datapath. Now the three stages are iteratively reused,
collapsed into one stage with a feedback path. The multiplier’s lookup table is in-
creased to hold the constants needed for all three iterations. The streaming permu-
tations and basic blocks are identical in all three stages, so they can be iteratively
reused with no added cost. As before, input vector x flows into the system at a rate of
two words per cycle. However, now a new input vector cannot begin streaming in im-
mediately after the previous one; instead it must wait until the first vector has iterated
through.
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5. EVALUATION

This section presents a set of experiments evaluating transform hardware cores gen-
erated by Spiral. The results show that the algorithmic and architectural freedoms
described by our formalism yield generated designs that span a wide cost/performance
trade-off space. A subset of this space constitutes the Pareto optimal solutions that
a designer would consider for applications. We target FPGAs and ASICs using fixed-
and floating-point data types. Further, we generate implementations for several trans-
forms, including the DFT, DCT, RDFT, and multidimensional transforms.

Benchmarks. In addition to evaluating trade-offs, we compare our FPGA FFT results
with implementations from the Xilinx LogiCore IP library [Xilinx, Inc. 2010] to es-
tablish that our baseline designs are comparable with platform-optimized commercial
designs. Later, Section 6 discusses how common transform architectures in the liter-
ature fit within our design space. For further comparisons, please see Milder et al.
[2008], where we compare our designs against our previous work (which uses differ-
ent hardware generation techniques), and Milder [2010], which contains a compari-
son of the relative cost and performance of our designs with various architectures in
the literature, as well as a commercially available floating point FFT FPGA processor
core [4DSP, LLC 2007].

5.1. Methodology

We have implemented the compilation flow described in Section 4 in the following
way. The algorithm generation, formula rewriting, and basic-block matrix compilation
stages are built inside of Spiral. The tools to implement streaming permutations are
implemented as described in Milder et al. [2009] and Püschel et al. [2009]. Lastly,
a Verilog backend written in Java takes as input a hardware formula and outputs
synthesizable register-transfer level Verilog. The entire compilation flow is initiated
and run through Spiral. Then, designs are synthesized targeting FPGA or ASIC as
follows.

FPGA. The FPGA evaluations described in this article target the Xilinx Virtex-6
XC6VLX760 or the Xilinx Virtex-5 XC5VLX330 FPGAs. All FPGA synthesis is per-
formed using Xilinx ISE version 12.0, and the area and timing data shown in the
results are extracted after the final place and route are complete. Multiple runs were
performed using the Xilinx Xplorer script in order to determine the maximum fre-
quency of each design.

We used Xilinx LogiCore single-precision floating-point IP cores for all floating-point
experiments, and we used the FPGA’s dedicated arithmetic units called DSP slices
when possible (fixed-point multiplication and floating-point addition and multiplica-
tion).

Memories can be mapped to two types of structures on Xilinx FPGAs: block RAM
(BRAM), which are 36kb dedicated hard memories built into the FPGA, or distributed
RAM, which is constructed out of the FPGA’s programmable logic elements. The Spiral
hardware compiler can choose between distributed and block RAM by outputting di-
rectives for the Xilinx ISE tool. It allows the user to direct it by providing a threshold
(that is, use a BRAM if we will utilize x% of it), or a budget (i.e., use up to x BRAMs as
efficiently as possible). In our experiments, we allowed a budget of 256 BRAMs (∼35%
of the Virtex-6). For the designs considered here, this budget is sufficient for the mem-
ory requirement of the designs, i.e., no distributed RAM is used for large memories.

ASIC. We target ASIC designs by synthesizing the generated cores using the Synop-
sys Design Compiler version C-2009.06-SP5, targeting a commercial 65nm standard
cell library. Area, timing, and power estimates are obtained from Design Compiler
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Fig. 9. Generated designs for DFT256, fixed-point, FPGA, throughput versus slices. The Pareto-optimal
designs are connected with a line. Data labels in the plot indicate the number of block RAMs and DSP48E1
slices required. The top plot shows results of the full exploration, while the bottom plot is cropped and
zoomed to clearly show the designs in the region indicated.

post-synthesis. We use Synopsys DesignWare for arithmetic units, allowing the tool to
place pipeline stages within the units automatically.

No memory compiler was accessible for the particular standard cell library used
in these evaluations, so we used CACTI version 6.5 [Muralimanohar et al. 2009], a
memory estimation tool, to estimate power and area for all required memories.

5.2. Design Space Exploration Example

In order to examine how different design space freedoms (algorithm, radix, iterative
reuse, streaming reuse) contribute to our space of designs, this section provides a de-
tailed evaluation of Spiral-generated implementations of DFT256 on a Xilinx Virtex-6
FPGA. Figure 9 shows throughput (in billion samples per second) versus area (given
in slices) on the Xilinx Virtex-6 FPGA. Given a fixed problem size n, performance (in
pseudo-gigaoperations per second, assuming 5n log2 n operations per DFTn) is propor-
tional to throughput; the right-hand y-axis shows performance for each design.
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Different data markers are used to illustrate the different parameters: an algo-
rithm’s radix (basic block size) r and the implementation’s iterative reuse (IR) depth d.
The diamond-shaped markers indicate designs with full IR, and the triangular mark-
ers indicate partial IR. Lastly, designs marked with circles and squares contain no IR.
For each series, the streaming width w starts from w = r and goes up to 32. The top
plot shows the results of the full exploration, while the bottom plot is cropped to clearly
show the designs with lower throughput and area.

As previously discussed, Spiral generates hardware cores for the DFT using different
algorithms, depending on the situation. In Figure 9, the algorithm can be determined
based on the parameters displayed. First, the Pease FFT algorithm (11) is used when
IR is used. So, the black, gray, and white diamonds represent the Pease FFT with radix
r = 2, 4, and 16, respectively. When IR is not used (represented as circles and squares),
Algorithms (12) and (13) are used.

The black line indicates the Pareto optimal set of designs for each graph. These
designs are those that give the best trade-off between the two metrics being considered
(here, throughput and area). So, if a designer only cares about those two metrics, the
points along the line are the only ones to consider. However, other costs are associated
with FPGA implementations: memory required (number of block RAMs or BRAMs),
and dedicated arithmetic units called DSP48E1 slices. Several points in each graph are
annotated with the number of BRAMs (first number) and DSP slices (second number)
required.

The set of designs considered covers a wide trade-off space. Here, the fastest design
is 76 times faster than the slowest but requires 33 times the number of slices, 16 times
the number of BRAMs, and 59 times the number of DSP slices.

The smallest and slowest design is an IR core with depth d = 1 generated from
the Pease FFT with radix r = 2 and streaming width w = 2. From there, the black
diamonds illustrate the same algorithm, radix, and depth, with increasing streaming
width: w = 2, 4, 8, 16, 32. As the streaming width increases (following the line of black
diamonds), the designs increase in throughput and in cost. Quickly, the radix 2 IR
designs become Pareto-suboptimal. The next Pareto optimal point is r = 2, w = 2, and
d = 2; now the IR product term has twice the depth. Of the designs with partial IR,
only this point contributes to the Pareto front.

Next, the gray diamonds show the d = 1 designs from the Pease radix 4 algorithm,
with width w = 4, 8, 16, 32. The IR radix 4 points contribute just one design to the
Pareto front. Following that, the circles and squares represent fully streaming designs
(those without IR), which provide the rest of the Pareto front. So, the IR designs pro-
vide the small/slow end of the Pareto optimal front, but as they scale larger, their
performance per area is quickly eclipsed by the streaming designs.

Further interesting comparisons can be made by examining the behavior of different
radices. For example, there are three points near the Pareto front at approximately 3.3
billion samples per second and approximately 2,000 slices. (These are the three highest
throughput points visible in the bottom plot.) Each of these designs is fully unrolled
and streamed with width w = 8; their only difference is in radix r (2, 4, or 8). All three
points are similar in throughput and area, however the data labels indicate that they
require differing amounts of BRAM and DSP slices. The least expensive of the three is
the radix 4 design, which requires only 16 BRAM and 60 DSP slices.

In general, higher radices lead to lower arithmetic and permutation costs, so it may
seem counterintuitive that the radix 4 design can provide better results here than
radix 8. However, the difference lies in algorithm: at radix 8, the system first must
use the Mixed-Radix FFT algorithm (13), which decomposes DFT256 into DFT4 and
DFT82 , but introduces additional overhead (seen in (13) as diagonal matrix T and
permutation matrices L). This additional overhead costs more than is saved by using
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radix 8 for a portion of the computation. The Mixed-Radix algorithm is most useful
when the problem size is such that r = 2 is the only natural radix supported (for
example, Mixed-Radix FFT is necessary to compute DFT128 with any radix other than
2).

In this way, we see that the available choices (in algorithm, radix, streaming
width, and IR depth) all contribute to the space of Pareto-optimal designs at differ-
ent cost/performance trade-off points.

5.3. Fast Fourier Transform on FPGA

Next, we show the results of benchmarking implementations of the fast Fourier trans-
form on FPGA with fixed-point and floating-point data types. Figure 10 shows through-
put (in billion samples per second) versus area (in slices) of the discrete Fourier trans-
form of size 1024 on the Xilinx Virtex-6 FPGA with 16-bit fixed-point data format (left)
and single-precision floating-point (right) data formats. Here, gray diamonds represent
Spiral-generated designs across the degrees of freedom discussed in Section 5.2. The
solid line connects the Spiral-generated Pareto-optimal points, which include designs
with and without iterative reuse and streaming width w up to 32. The black circles
represent the four designs from the Xilinx LogiCore FFT IP library [Xilinx, Inc. 2010].
These designs were implemented using LogiCore and evaluated using the same Xilinx
tools as the Spiral-generated designs. The plots in the top row of this figure show the
full range of points considered, while the bottom row is cropped and zoomed to clearly
show the designs in the region near the origin.

The Xilinx LogiCore FFT does not provide a full floating-point implementation.
Rather, it provides an implementation where the input and output are given in single-
precision floating-point, but internally, computations are performed using a fixed-point
implementation with twiddle factors stored as 24- or 25-bit fixed-point values. This
results in arithmetic units that are much less expensive to implement than the full
floating-point implementations generated by Spiral.

The Xilinx IP cores closely match the cost/performance of the smallest Spiral-
generated designs. However, as more resources are allowed to be consumed, the
Spiral-generated designs are able to obtain a commensurate increase in throughput.
For example, for the fixed-point DFT1024 study, the largest/fastest design requires
49 times the slices, 96 times the BRAM, and 107 times the DSP48E1 slices of the
smallest/slowest design point but has 132 times the throughput. Compared with the
largest/fastest design in the Xilinx LogiCore library, the fastest Spiral-generated de-
sign uses 11.8 times the slices, 19.2 times the BRAM, and 18.8 times the DSP slices
while providing 16.5 times throughput.

If latency were used as the performance metric instead of throughput, similar trends
would also be seen, except the designs without iterative reuse (the higher perfor-
mance/cost designs) would exhibit a performance penalty because they are optimized
for throughput: different portions of the datapath process different data vectors at
once. The iterative reuse designs are in this sense optimized for latency-based compu-
tation because they only employ a small amount of overlapping of multiple problems.
That is, they are able to match the latency of non-iterative reuse designs at lower cost.

Although not presented here, we have repeated these evaluations over multiple
transform sizes with similar results. Additionally, in Section 5.5 we evaluate DFT im-
plementations where the problem size is not a power of two.

5.4. Fast Fourier Transform on ASIC

Next, we synthesize Spiral-generated hardware cores targeting a commercial 65nm
standard cell library. First, we perform a baseline evaluation of designs with maxi-
mum clock frequency. Then, we repeat at lower frequencies and examine the effect on
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Fig. 10. Throughput versus area, compared with Xilinx LogiCore: DFT1024 fixed-point (left) and floating-
point (right). The top row shows the full comparison, while the plots in the bottom row are cropped and
zoomed to clearly show the designs with low throughput and area.

performance, power, and area. Lastly, we use this flexibility in frequency to implement
a set of designs that meet a given throughput target while allowing a trade-off between
power and area.

Baseline: Maximum Frequency. First, we synthesize designs with the goal of maximizing
the clock frequency. Figure 11 shows throughput versus power (top row) and through-
put versus area (bottom row) for DFT1024 (left) and DFT4096 (right), utilizing 16-bit
fixed-point data. Figure 12 repeats this experiment using floating-point data. Two data
markers are used in each plot: black diamonds for cores with iterative reuse and gray
circles for designs without IR. A gray line is used to highlight the Pareto-optimal set.

Similar to the FPGA results, here the iterative reuse designs provide the least expen-
sive (smallest and lowest power) but slowest designs. For example, for DFT1024 with
fixed-point data, the fastest design is approximately 100 times faster than the slowest
but requires 11 times the area and 24 times the power. In both the ASIC and FPGA ex-
periments, designs with iterative reuse comprise a larger portion of the Pareto-optimal
set when the FFT problem size is large.

For both the fixed-point and the floating-point experiments, designs up to stream-
ing width w = 32 are considered. Wider designs can easily be generated but become
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Fig. 11. DFT1024 (left) and DFT4096 (right), 16-bit fixed-point on 65nm ASIC. Throughput versus power
(top row) and throughput versus area (bottom row).

increasingly difficult for Design Compiler to synthesize, increasing the synthesis time
and memory requirement, so they are not considered in these experiments.

Reduced Frequency. The previous results showed throughput versus power and area
when all designs were synthesized targeting the maximum frequency. However, when
energy efficiency is a concern, it is also necessary to consider designs running at lower
clock frequencies. Now we explore the trends in performance, power, and area when
designs are resynthesized at lower frequencies. In addition to savings that may be pro-
vided by the synthesis tool, area and power are further saved by reducing the amount
of pipelining necessary in the arithmetic units (as previously discussed in Section 5.1).

Figure 13 (top row) revisits the 16-bit fixed-point DFT1024 experiment previously
shown in Figure 11. Now the Pareto-suboptimal points are removed, leaving only the
Pareto front, shown as black diamonds. Then gray diamonds are used to show how the
throughput, power, and area of five designs are effected as the systems are regenerated
and resynthesized, targeting 200, 400, and 600 MHz. As the frequency is decreased,
throughput and power are reduced commensurately. As seen in the top-right graph of
Figure 13, area is reduced only slightly as frequency decreases.
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Fig. 12. DFT1024 (left) and DFT4096 (right), floating-point on 65nm ASIC. Throughput versus power (top
row) and throughput versus area (bottom row).

This shows that a large parallel design clocked at a low frequency can be more power-
efficient than a smaller design at a high frequency. Further, Spiral can exploit more of
its algorithmic freedoms for larger designs, which can use higher radices.

As an example, Figure 13 (top) contains a point from the original Pareto-optimal
set at approximately 7 billion samples per second with an area of 0.9 mm2 consuming
approximately 0.5 Watts (while clocked at 1.4 GHz). However, a similar throughput
can be obtained using a 2.2mm2 design that only consumes 0.3 Watts (while clocked
at 200 MHz). This type of trade-off between area and power given a fixed performance
constraint is explored in the following section.

Although the graphs in this section only demonstrate these effects on five designs
for one problem, more evaluations (not shown here) confirm these trends.

Power/Area Optimization Under Throughput Requirement. Often a system requires that a
transform be implemented to meet a given throughput requirement. The preceding
frequency reduction experiments can be modified to reflect the type of exploration re-
quired for such a situation.

Figure 13 (bottom row) again shows fixed-point implementations of DFT1024 on
65nm ASIC at several frequencies. However, now the designs are not synthesized at
arbitrary frequencies. Instead, each is synthesized at precisely the frequency needed
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Fig. 13. Top row: DFT1024 throughput versus power (left) and area (right) with frequencies reduced to
200, 400, 600 MHz. Bottom row: DFT1024 throughput versus power (left) and area (right) with frequencies
needed to reach 2 billion samples per second.

to yield a performance of a fixed throughput target: two billion samples per second,
illustrated with the dashed line. As shown in the left plot, reducing the frequency of
the large designs allows them to precisely reach the target throughput with low power
consumption. However, as shown in the right plot of Figure 13, this requires a much
larger area.

Repeating this technique for all designs capable of reaching the performance target
gives us nine points with equal throughput. Some require less power but more area;
others the opposite. This allows a set of power-area trade-offs, with each design having
equal throughput. Of the nine designs considered here, five are Pareto-optimal with re-
spect to power and area. Since performance is equivalent for each design, the designer
can then choose whichever point best matches the required power and area.

5.5. Other Transforms

Although most of this evaluation has focused on the fast Fourier transform with two-
power problem size, we generate designs for other transforms as well. Figure 14 shows
throughput versus area on FPGA for four different transforms. First, Figure 14 (top-
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Fig. 14. DFT432 (top-left), RDFT2048 (top-right), 2D-DFT64×64 (bottom-left), and DCT-2n (bottom-right).

left) shows DFT432, which uses the mixed-radix FFT (13) and the Bluestein FFT (14)
to compute the DFT with problem size not equal to a power of two.

Next, Figure 14 (top-right) shows results for RDFT2048 using our Native RDFT Al-
gorithms ((17)–(20)), the Complex half-size Algorithm (16), and the complex FFT algo-
rithms described previously.

Then, Figure 14 (bottom-left) shows results for the two-dimensional discrete Fourier
transform 2D-DFT64×64, which is computed using the row-column algorithm (15) as
well as the previously discussed one-dimensional FFT algorithms. Here, the different
data markers indicate different iterative reuse choices.

Lastly, Figure 14 (bottom-right) shows throughput versus area for DCT-2n for n =
64, 256, 1024, 4096 on the Xilinx Virtex-6 FPGA using Algorithm (21) from Nikara et al.
[2006]. All points shown here are fully streaming (i.e., no iterative reuse is utilized).

6. RELATED WORK

The formula language (SPL) used in this article has been previously used as a way
to describe transform algorithms. For example Van Loan [1992], Püschel et al. [2005],
and Johnson et al. [1990] use this type of representation to specify and generate soft-
ware implementations of the FFT. The formula rewriting system that we use to pro-
duce our designs (part of Spiral) is used in automatic parallelization and vectorization
of software in Franchetti et al. [2006a, 2006b], respectively.
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Although our work (first presented in part in Milder et al. [2008]) was the first to ex-
tend SPL into HSPL to support a general class of hardware implementations, variants
of this mathematical language have been used in the process of designing special-
purpose hardware for the FFT. For example, Kumhom et al. [2000] uses the tensor
product-based mathematical language to derive algorithms used in a universal FFT
processor that is scalable in the number of processing elements. More recently, Cortés
and Vélez [2009] study pipelined architectures, using the tensor language to describe
a family of FFT algorithms and providing a hardware interpretation of certain for-
mula constructs. For the discrete cosine transform, Nikara et al. [2006], Takala et al.
[2000], and Astola and Akopian [1999] use the tensor formula representation as a way
to represent algorithms suitable for pipelined hardware implementation.

Our compilation toolflow has some features in common with general-purpose high-
level synthesis (HLS) systems. Some recent papers have explored the benefits of using
HLS to implement FFTs in FPGAs or as ASICs. For example, Sukhsawas and Benkrid
[2004] implement a pipelined FFT processor in Handel-C, but they do not consider
architectural trade-offs (i.e., cost/performance). An ASIC-based 802.11a transmitter
(which primarily consists of IFFT) is studied in Dave et al. [2006], which uses Blue-
spec SystemVerilog to explore different values for streaming width and iterative reuse
depth from a few source implementations. (Dave et al. [2006] also examine the trade-
off between area and power at a fixed performance target, as we do in Section 5.4).
Similarly, Kee et al. [2008] target the FFT on an FPGA, expressing a radix 2 FFT
algorithm as a double loop using National Instruments LabVIEW, where each loop
can then be unrolled by the tool. These papers make good use of HLS systems to eas-
ily exploit some architectural-level trade-offs, but they are unable explore algorithmic
options (or the joint algorithm/architecture space).

Many different hardware implementations of linear transforms have been studied
(primarily, the FFT). In general, these implementations use a few classes of architec-
tures that are analogous to portions of our hardware parameter space. For example,
our designs with full IR and SR are analogous to fully folded special-purpose proces-
sors, such as those of Cohen [1976] (FFT) and Takala et al. [2000] (DCT). Three of the
Xilinx LogiCore designs that we compare with in Figure 10 are of this class of design.
Others (e.g., Zapata and Argüello [1992]) use full IR with parameterizable parallelism
(various levels of SR).

Pipelined designs such as those of He and Torkelson [1996] (FFT) and Nikara et al.
[2006] (DCT) are very frequently used. These designs are analogous to the architec-
tures we generate that do not employ iterative reuse. Typically, those found in the
literature are limited to a streaming width of one word per cycle (while we are inter-
ested in varying w to allow cost/performance trade-off). However, some (e.g., Gorman
and Wills [1995]) allow scaling of the streaming width. In Figure 10, we compare our
designs against those of He and Torkelson [1996], which are used in the Xilinx Logi-
Core FFT (the fastest/largest of the four LogiCore designs). In Milder [2010], we give a
quantitative comparison of the relative cost and performance of several different types
of pipelined implementations of the FFT.

7. CONCLUSIONS

This article presented an automated system for generating hardware cores for comput-
ing linear signal processing transforms. This system automatically implements hard-
ware designs across a wide space of cost/performance trade-offs, allowing the user to
choose the implementation that best fits his or her application. The key to this system
lies in the mathematical expression of relevant degrees of freedom, both in the space
of transform algorithms and in the space of sequential datapaths.
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In this article, we explained the tensor formula language for specifying algorithms,
showed our extensions to enable explicit hardware specification, and showed how this
mathematical language enables automatic compilation into RTL Verilog. We evaluated
our generated designs for several transforms on FPGAs and ASICs, evaluating area,
power, and throughput. For each platform and transform, our tool is able to give a
large cost/performance trade-off space.
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